The major event that hit Europe in summer 2021 reminds society that floods are recurrent and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) efforts preferring sole technical measures to prevent and mitigate floods have shown to be not sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent paradigm shift of FRM towards solutions that use nature-derived features, processes and management options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of NBS across various settings remains fragmented and their implementation faces a series of institutional barriers. In this paper, we adopt a community expert perspective drawing upon LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on the results, we define avenues for further research, connecting hydrology and soil science, on the one hand, and land use planning, social geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in the research of NBS in FRM.
Archives: Publications
Quantifying how well Nature-based Solutions can offset anthropogenic climate change impacts is important for adaptation planning, but has rarely been done. Here we show that a widely-applied Nature-based Solution in South Africa – invasive alien tree clearing – reduces the impact of anthropogenic climate change on drought streamflow. Using a multi-model joint-attribution of climate and landscape-vegetation states during the 2015–2017 Cape Town “Day Zero” drought, we find that anthropogenic climate change reduced streamflow by 12–29% relative to a counterfactual world with anthropogenic emissions removed. This impact on streamflow was larger than corresponding reductions in rainfall (7–15%) and reference evapotranspiration (1.7–2%). Clearing invasive alien trees could have ameliorated streamflow reductions by 3–16% points for moderate invasions levels. Preventing further invasive alien tree spread avoided potential additional reductions of 10–27% points. Total clearing could not have offset the anthropogenic climate change impact completely. Invasive alien tree clearing is an important form of catchment restoration for managing changing hydroclimatic risk, but will need to be combined with other adaptation options as climate change accelerates.
Forest carbon projects can deliver multiple benefits to society. Within Southeast Asia, 58% of forests threatened by loss could be protected as financially viable carbon projects, which would avoid 835 MtCO2e of emissions per year from deforestation, support dietary needs for an equivalent of 323,739 people annually from pollinator-dependent agriculture, retain 78% of the volume of nitrogen pollutants in watersheds yearly and safeguard 25 Mha of Key Biodiversity Areas.
There is increasing global interest in employing nature-based solutions, such as reforestation and wetland restoration, to help reduce water risks to economies and society, including water pollution, floods, droughts and water scarcity, that are likely to become worse under future climates. Africa is exposed to many such water risks. Nature-based solutions for adaptation should be designed to benefit biodiversity and can also provide multiple co-benefits, such as carbon sequestration. A systematic review of over 10 000 publications revealed 150 containing 492 quantitative case studies related to the effectiveness of nature-based solutions for downstream water quantity and water quality (including sediment load) in Africa. The solutions assessed included landscape-scale interventions and patterns (forests and natural wetlands) and site-specific interventions (constructed wetlands and urban interventions e.g. soakaways). Consistent evidence was found that nature-based solutions can improve water quality. In contrast, evidence of their effectiveness for improving downstream water resource quantity was inconsistent, with most case studies showing a decline in water yield where forests (particularly plantations of non-native species) and wetlands are present. The evidence further suggests that restoration of forests and floodplain wetlands can reduce flood risk, and their conservation can prevent future increases in risk; in contrast, this is not the case for headwater wetlands. Potential trade-offs identified include nature-based solutions reducing flood risk and pollution, whilst decreasing downstream water resource quantity. The evidence provides a scientific underpinning for policy and planning for nature-based solutions to water-related risks in Africa, though implementation will require local knowledge.
Fire-prone dry forests often face increasing fires from climate change with low resistance and resilience due to logging of large, old fire-resistant trees. Their restoration across large landscapes is constrained by limited mature trees, physical settings, and protection. Active restoration has been costly and shown limited effectiveness, but lower cost passive restoration is less studied. I used GIS and machine learning to see whether passive restoration of old trees could overcome constraints in time, by 2060, across 667,000 ha of montane forests in the San Juan Mountains, Colorado, where temperatures are increasing faster than the global average. Random Forest models of physical locations of reconstructed historical old growth (OG) and relatively frequent fire (RFF) show historical OG with RFF was favored between 6.1 and 7.9℃ annual mean temperatures. Random Forest models projected that similar temperature-suitable locations were moved into the current middle montane ca 2015, and would be extended to just below the upper limit of the montane if the Paris 1.5℃ goal is reached, but beyond if not. US Forest Service common stand exam data, which covered ~15% of the study area and included 26,149 tree ages, show the highest potential for restoring resistance and resilience from old trees is a ≥120-year age class. This class could become a ≥160-year age class, which meets old-growth age criteria, over 81% of the area by ca 2060, nearly fully restoring historical old-growth levels. Half this age class is already protected, and much of the remainder could be retained using evidence-based diameter caps. Datasets thus are sufficient to show that passive restoration of old-tree resistance and resilience to fire is feasible by ca 2060 across a large montane landscape, although contingent on global success in achieving the Paris 1.5℃ goal. Passive restoration may be viable elsewhere.
Entering the UN Decade on Ecosystem Restoration, interventions referred to as nature-based solutions (NBS) are at the forefront of the sustainability discourse. While applied in urban, natural forest or wetland ecosystems, they are underutilized in agricultural landscapes. This paper presents a technical framework to characterise NBS in agricultural systems. NBS in the agriculture sector is proposed as “the use of natural processes or elements to improve ecosystem functions of environments and landscapes affected by agricultural practices, and to enhance livelihoods and other social and cultural functions, over various temporal and spatial scales.” The framework emerges from a review of 188 peer-reviewed articles on NBS and green infrastructure published between 2015 and 2019 and three international expert consultations organized in 2019–2020. The framework establishes four essential functions for NBS in agriculture: 1) Sustainable practices — with a focus on production; 2) Green Infrastructure — mainly for engineering purposes such as water and soil, and slope stabilization; 3) Amelioration — for restoration of conditions for plants, water, soil or air and climate change mitigation; and 4) Conservation — focusing on biodiversity and ecosystem connectivity. The framework connects the conventional divide between production and conservation to add functionality, purpose and scale in project design. The review confirmed limited evidence of NBS in agricultural systems particularly in developing country contexts, although specific technologies feature under other labels. Consultations indicated that wider adoption will require a phased approach to generate evidence, while integrating NBS in national and local policies and agricultural development strategies. The paper concludes with recommended actions required to facilitate such processes.
- 1. The environmental benefits and lower implementation costs of (assisted) natural forest regrowth (NFR) compared to tree planting qualify it as a viable strategy to scale up forest restoration. However, NFR is not suitable in all places, because the potential for forest regeneration depends on the socio-environmental context and differs greatly over space and time. Therefore, it is critical to quantify the potential contribution of NFR for reaching forest restoration targets and complying with environmental policies.
- 2. Here, we quantify the socio-environmental consequences of NFR by considering four targets differing in restored area in the Atlantic Forest (6, 8, 15 and 22 Mha). We quantified the compliance with environmental policies, expected distribution of natural and restored vegetation within the biome and social fairness (distribution of restoration efforts and costs within small, medium and large-sized properties) of two hypothetical forest restoration scenarios.
- 3. We show that large-scale forest restoration prioritizing the areas with the highest potential for NFR (Scenario I) allows us to comply with one-third of the current environmental debt in the Atlantic Forest. Furthermore, this scenario disproportionately burdens specific types of land use, increases socioeconomic inequalities and concentrates restoration activities in regions in which the natural vegetation cover is already high.
- 4. By contrast, Scenario II—eradicating the environmental debt that results from environmental policies, then prioritizing areas with the lowest overall restoration costs until reaching the restoration targets—is socially fairer and maximizes compliance with environmental policies. Its outcomes are more homogeneously distributed among counties and small, medium and large-sized properties from the Brazilian Atlantic Forest. Despite doubling the implementation costs, the lower overall restoration costs in Scenario II result from significantly lower opportunity costs than in Scenario I.
- 5. Synthesis and application. The environmental, social and economic outputs of large-scale forest restoration in the Atlantic Forest can be maximized when NFR and tree planting are balanced (Scenario II). To achieve compliance with forest restoration commitments, we thus advocate for the site-specific selection of the best forest restoration strategy to guarantee social fairness and compliance with environmental policies at minimum overall restoration costs.
- Many national governments have incorporated nature-based solutions (NbS) in their plans to reduce net greenhouse gas emissions. However, uncertainties persist regarding both feasibility and consequences of major NbS deployment. Using the United Kingdom as a national-level case study, we examined the potential contribution of three terrestrial NbS: peatland restoration, saltmarsh creation and woodland creation.
- While there is substantial political and societal interest in these three NbS, they also have strong potential for competition with other land uses, which will be a critical barrier to substantial deployment. We conducted a national mapping exercise to assess the potential area available for woodland creation. We then assessed the combined climate change mitigation potential to 2100 for the three NbS options under a range of ambition levels.
- In line with the most ambitious targets examined, 2 Mha of land is potentially available for new woodland. However, climate change mitigation benefits of woodland are strongly dependent on management choices. By 2100, scenarios with a greater proportion of broadleaved woodlands outsequester non-native conifer plantations, which are limited by regular timber harvesting.
- Peatland restoration offers the greatest mitigation per unit area, whilst the contribution from saltmarsh creation is limited by the small areas involved. Overall, the contribution of these NbS to the United Kingdom’s net zero emissions target is relatively modest. Even with the most ambitious targets considered here, by 2100, the total cumulative mitigation from the three NbS is equivalent to only 3 years’ worth of UK emissions at current levels.
- Policy implications. Major deployment of nature-based solutions (NbS) is possible in the United Kingdom but reaching ‘net zero’ primarily requires substantial and sustained reductions in fossil fuel use. However, facilitating these NbS at the national scale could offer many additional benefits for people and biodiversity. This demands that policy-makers commit to a UK-wide strategic approach that prioritises the ‘nature’ aspect of NbS. In the push to reach ‘net zero’, climate change mitigation should not be used to justify land management practices that threaten biodiversity ambitions.
The concept of NbS bridges between researchers and practitioners who search for innovative solutions to a wide range of societal problems and challenges, mostly related to ecological issues. Our conceptual paper aims at grounding the concept in theorizing NbS as a variant of ‘co-evolutionary technology’ CET, informed by ecological and institutional economics, and contextualized in recent Anthropocene research. This results in a new definition of NbS. NbS mediate between technosphere and biosphere evolution. We formulate four principles of CET, with the pivot of CET meeting both human needs and enhancing biospheric evolutionary potential, which feeds back on CET in co-creative design. The paper introduces core theoretical concepts, such as distributed agency and affordances, and proceeds in detailing CET along the standard tripartite view of technology, that is, design, production and use. We conclude in arguing that CET are inherently ethical since their design requires equal recognition of various human and non-human actors, both in terms of functions and ways of world-making.
Limited time and resources remain to constrain the climate crisis. Natural climate solutions represent promising options to protect, manage and restore natural lands for additional climate mitigation, but they differ in (1) the magnitude and (2) immediacy of mitigation potential, as well as (3) cost-effectiveness and (4) the co-benefits they offer. Counter to an emerging preference for restoration, we use these four criteria to propose a general rule of thumb to protect, manage and then restore lands, but also show how these criteria explain alternative prioritization and portfolio schemes. This hierarchy offers a decision-making framework for public and private sector actors to optimize the effectiveness of natural climate solutions in an environment in which resources are constrained, and time is short.
Worldwide, Indigenous peoples are leading the revitalization of their/our cultures through the restoration of ecosystems in which they are embedded, including in response to increasing “megafires.” Concurrently, growing Indigenous-led movements are calling for governments to implement Indigenous rights, titles and treaties, and many settler-colonial governments are committing to reconciliation with Indigenous peoples and to implementing the United Nations Declaration on the Rights of Indigenous Peoples. Yet, despite growing recognition that just and effective conservation is only possible through partnerships with, or led by, Indigenous peoples, decolonizing approaches to restoration have received insufficient attention. However, reconciliation will be incomplete without Indigenous-led restoration of Indigenous lands, knowledges, and cultures. In this article, we introduce the concept of “walking on two legs” to guide restoration scientists and practitioners in advancing the interconnected processes of Indigenous-led restoration and reconciliation in Indigenous territories. As an action-oriented framework articulated by Secwépemc Elder Ronald E. Ignace, “walking on two legs” seeks to bring Indigenous knowledges into balance with western scientific knowledge in service of upholding an Indigenous stewardship ethic that is embedded in Indigenous ways of relating to land and embodies principles of respect, reciprocity, and responsibility. Grounding this discussion in the context of fire-adapted ecosystems of western Canada and unceded and traditional Secwépemc territory, Secwepemcúl̓ecw, we argue that walking on two legs, along with principles of reconciliation, offers a pathway to uphold respectful relationships with Indigenous peoples, knowledges, and territories through Indigenous-led restoration.
Participation and citizen engagement are fundamental elements in urban regeneration and in the deployment of nature-based solutions (NBS) to advance sustainable urban development. Various limitations inherent to participatory processes concerning NBS for inclusive urban regeneration have been addressed, and lessons have been learnt. This paper investigates participation and urban regeneration and focuses on the development of guidelines for citizen engagement and the co-creation of NBS in the H2020 URBiNAT project. The methodology first involves the collection of scientific and practical input on citizen engagement from a variety of stakeholders, such as researchers and practitioners, to constitute a corpus of qualitative data. This input is then systematized into guideline categories and serves as the basis for a deeper analysis with researchers, experts, and practitioners, both inside and outside URBiNAT, and in dialogue with other cases of participatory NBS implementation. The results highlight an ‘ecology of knowledges’ based on a ‘living’ framework, which aims to address the specific needs of various segments of citizens and to match citizen engagement to the participatory cultures of cities. Implications and further research are also discussed, with a special focus on the implementation of NBS. The conclusions broaden the research context to include the refinement of the NBS approach, with participation being seen as both a means and an end.
Editorial – A new action plan to halt biodiversity loss needs scientific specialists to work with those who study how governments function.
To the Editor — World and industry leaders at the 26th United Nations Climate Change Conference of the Parties (COP26), held in Glasgow in November 2021, asserted in their declaration on forest and land use a commitment to “halt and reverse forest loss and land degradation by 2030”. Nothing less than decisive and coordinated global action is required as we near an apocalyptic future of environmental degradation, species extinction and catastrophic climate change. With the recent acceleration in newly created global commitments and successes, such as the achievement of Aichi Target 11 in 2021, we should nonetheless pause and reflect about the implications of such top-down pledges to conserve forests for Indigenous peoples worldwide.
Nature-based solutions (NbS) provide direct benefits to people who live in areas where these approaches are present. The degree of direct benefits (thermal comfort, reduced flood risk, and mental health) varies across temporal and spatial scales, and it can be modelled and quantified. Less clear are the indirect benefits related to opportunities to learn about the environment and its influence on personal behaviour and action. The present study, based on survey data from 1955 participants across 17 cities worldwide, addressed whether participation in NbS through two types of interactions (a passive learning experience about NbS and a more active experience based on Citizen Science) stimulates motivation and willingness to be more environmentally sustainable. Over 75% of participants improved their understanding of environmental sustainability and were highly motivated and more confident in their ability to improve sustainability in their local environment/nature. Similar percentage improvements arose from both types of activity across all cities. Those NbS that had elements of both blue and green infrastructure rated higher than those that had predominantly green NbS. Interestingly, a large percentage of the participants did not live near the NbS that were the focus of these activities. This indicated that expected spatial limitations between benefit and recipient may be overcome when dedicated programmes involve people in learning or monitoring NbS. Therefore, opportunities have arisen to expand inclusion from the immediately local to the larger community through participation and Citizen Science, with potential benefits to social cohesion and urban sustainability.
This book presents new research on innovative financial instruments and approaches available to implement and mainstream nature-based solutions (NBS) at various scales and in different contexts. This book explores various public, private, and blended financing tools available to develop NBS across terrestrial and marine ecosystems, involving multiple stakeholders and in jurisdictions of varying climates and income levels. Furthermore, the book provides case studies of the innovative application of financing to scale up NBS, with best practices identified.
Biodiversity underpins the fundamental elements for human well-being including food security, human health and access to clean water. In 2010, the Aichi Targets were adopted by world leaders to address the crisis of biodiversity loss. Despite conservation efforts, none of the Aichi Targets have been fully met. However, comprehensive analysis of the reasons for failure in terms of implementation mechanisms is, to date, rare and limited in scope. Here, we demonstrate that most parties did not set effective national targets in accordance with the Aichi Targets, and investments, knowledge and accountability for biodiversity conservation have been inadequate to enable effective implementation. We recommend that the new global targets under the post-2020 Global Biodiversity Framework should be adopted by parties as the minimum national targets to achieve the 2050 Vision. We propose that financial resources for biodiversity conservation are substantially increased through a variety of sources, including the deployment of new economic instruments such as payments for ecosystem services. In addition, science–policy interfaces at all levels need to be strengthened to integrate scientific, Indigenous and local knowledge to support decision-making. We suggest that a compliance and accountability mechanism, based on monitoring systems, is created to provide transparent and credible review of parties’ implementation of the new global targets.
The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade-offs with climate change mitigation. Specifically, we identify direct co-benefits in 14 out of the 21 action targets of the draft post-2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale-dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature’s contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re-emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.
Emerging research points to large greenhouse gas mitigation opportunities for activities that are focused on the preservation and maintenance of ecosystems, also known as natural climate solutions (NCS). Despite large quantifications of the potential biophysical and carbon benefits of these activities, these estimates hold large uncertainties and few capture the socio-economic bounds. Furthermore, the uptake of NCS remains slow and information on the enabling factors needed for successful implementation, co-benefits, and trade-offs of these activities remain underrepresented at scale. As such, we present a systematic review that synthesizes and maps the bottom-up evidence on the contextual factors that influence the implementation of NCS in the peer-reviewed literature. Drawing from a large global collection of (primarily case study-based, N = 211) research, this study (1) clarifies the definition of NCS, including in the context of nature-based solutions and other ecosystem-based approaches to addressing climate change; (2) provides an overview of the current state of literature, including research trends, opportunities, gaps, and biases; and (3) critically reflects on factors that may affect implementation in different geographies. We find that the content of the reviewed studies overwhelmingly focuses on tropical regions and activities in forest landscapes. We observe that implementation of NCS rely, not on one factor, but a suite of interlinked enabling factors. Specifically, engagement of indigenous peoples and local communities, performance-based finance, and technical assistance are important drivers of NCS implementation. While the broad categories of factors mentioned in the literature are similar across regions, the combination of factors and how and for whom they are taken up remains heterogeneous globally, and even within countries. Thus our results highlight the need to better understand what trends may be generalizable to inform best practices in policy discussions and where more nuance may be needed for interpreting research findings and applying them outside of their study contexts.
The Convention on Biological Diversity is defining the goals that will frame future global biodiversity policy in a context of rapid biodiversity decline and under pressure to make transformative change. Drawing on the work of Indigenous and non-Indigenous scholars, we argue that transformative change requires the foregrounding of Indigenous peoples’ and local communities’ rights and agency in biodiversity policy. We support this argument with four key points. First, Indigenous peoples and local communities hold knowledge essential for setting realistic and effective biodiversity targets that simultaneously improve local livelihoods. Second, Indigenous peoples’ conceptualizations of nature sustain and manifest CBD’s 2050 vision of “Living in harmony with nature.” Third, Indigenous peoples’ and local communities’ participation in biodiversity policy contributes to the recognition of human and Indigenous peoples’ rights. And fourth, engagement in biodiversity policy is essential for Indigenous peoples and local communities to be able to exercise their recognized rights to territories and resources.
- Restoring the degraded Atlantic Forest is one of the biggest conservation challenges in Brazil. In a biome with high human presence, understanding the potential for restoration approaches, such as agroforestry, to provide benefits to smallholder farmers and biodiversity is essential in developing equitable restoration strategies.
- Smallholder or family farmers are essential to national food security, producing most fruit and vegetables consumed in Brazil. Their farms can also provide ecological stepping stones for biodiversity. To better understand their role in Atlantic Forest restoration, this study explores the use of agroforestry by smallholder farmers from the Movimento Sem Terra (MST), the Rural Landless Workers’ Movement, in Pontal do Paranapanema.
- We use quantitative and qualitative data to assess farmer perceptions of the measures which support agroforestry farming, barriers to implementation and its impact on indicators of wellbeing. We find agroforestry farmers report significant benefits in 8 of 18 tested indicators. Attitudes to agroforestry are varied, but common themes emerge including the high value of tree cover for shade and cooling effects, and the difficulties in selling agroforestry products. Our results show lack of policy support and initial investment needs are the biggest constraints to agroforestry, but opportunity cost is not considered a large barrier.
- Tailored policies and financial measures are needed to integrate thousands of smallholder farmers into the Atlantic Forest restoration agenda, helping to reach biome restoration targets while supporting rural livelihoods and national food security. Further research is required into links between additional socio-economic and biogeographical variables and agroforestry uptake in the region
Co-production, the collaborative weaving of research and practice by diverse societal actors, is argued to play an important role in sustainability transformations. Yet, there is still poor understanding of how to navigate the tensions that emerge in these processes. Through analyzing 32 initiatives worldwide that co-produced knowledge and action to foster sustainable social-ecological relations, we conceptualize ‘co-productive agility’ as an emergent feature vital for turning tensions into transformations. Co-productive agility refers to the willingness and ability of diverse actors to iteratively engage in reflexive dialogues to grow shared ideas and actions that would not have been possible from the outset. It relies on embedding knowledge production within processes of change to constantly recognize, reposition, and navigate tensions and opportunities. Co-productive agility opens up multiple pathways to transformation through: (1) elevating marginalized agendas in ways that maintain their integrity and broaden struggles for justice; (2) questioning dominant agendas by engaging with power in ways that challenge assumptions, (3) navigating conflicting agendas to actively transform interlinked paradigms, practices, and structures; (4) exploring diverse agendas to foster learning and mutual respect for a plurality of perspectives. We explore six process considerations that vary by these four pathways and provide a framework to enable agility in sustainability transformations. We argue that research and practice spend too much time closing down debate over different agendas for change – thereby avoiding, suppressing, or polarizing tensions, and call for more efforts to facilitate better interactions among different agendas.
Bangladesh is one of the world’s most vulnerable countries to climate change because of its flat and low-lying topography. The country’s coastal areas are most susceptible to river erosion, flooding, tropical cyclones, salinity intrusion, and tidal surges. Natural and human-induced hazards and disasters have a ripple effect on the ecosystem, resulting in the loss of human lives, property, and the valuable resources needed for human subsistence. The review summarizes the current literature, highlighting the vulnerability index, local-level adaptation strategies, and future research work. The reviewed literature
has reported common hazards like tropical cyclones and tidal waves that can cause tidal floods and riverbank erosion, all of which have a high-to-medium impact on the structure of homes, income, wealth, and employment. Agriculture is the most vulnerable sector in the coastal areas. Aquaculture, shrimp, open-water fish collection, and infrastructure are all vulnerable to disasters in coastal areas. The widely used vulnerability indexes are Livelihood Vulnerability Index (LVI), Coastal Vulnerability Index (CVI) and principal components (PCs) reported in the literature. The local level adaptation strategy is to build the house on high land using bamboo and wood. The pond/gher bound ponds by the net to protect fish from the overflow water, put soil on the gher dike, and sell fish as soon as possible. Diseases of shrimp viruses and white fishes use calcium carbonate, fertilizer, and potash alum as preventative measures. The farmer converted their agricultural land into gher for fish/shrimp cultivation. The community stored/harvested rainwater in a plastic pot or soil pot. The study results will help the government with landscape planning and a disaster-prevention plan at the local level
Understanding where people depend the most on natural resources for their basic human needs is crucial for planning conservation and development interventions. For some people, nature is a direct source of food, clean water, and energy through subsistence uses. However, a high direct dependency on nature for basic needs makes people particularly sensitive to changes in climate, land cover, and land tenure. Based on more than 5 million household interviews conducted in 85 tropical countries, we identified where people highly depend on nature for their basic needs. Our results show that 1.2 billion people, or 30% of the population across tropical countries, are highly dependent on nature. In places where people highly depend on nature for their basic needs, nature-based strategies that protect, restore or sustainably manage ecosystems must be carefully designed to promote inclusive human development alongside environmental benefits.
Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing “bottom-up” sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to $100/tCO2eq) land-based mitigation is 8–13.8 GtCO2eq yr−1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50% from forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75–4.8 GtCO2eq yr−1) and the top 15 countries account for about 60% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.