The planetary role of seagrass conservation

Seagrasses are remarkable plants that have adapted to live in a marine environment. They form extensive meadows found globally that bioengineer their local environments and preserve the coastal seascape. With the increasing realization of the planetary emergency that we face, there is growing interest in using seagrasses as a nature-based solution for greenhouse gas mitigation. However, seagrass sensitivity to stressors is acute, and in many places, the risk of loss and degradation persists. If the ecological state of seagrasses remains compromised, then their ability to contribute to nature-based solutions for the climate emergency and biodiversity crisis remains in doubt. We examine the major ecological role that seagrasses play and how rethinking their conservation is critical to understanding their part in fighting our planetary emergency.

Governing for Transformative Change across the Biodiversity-Climate-Society Nexus

Transformative governance is key to addressing the global environmental crisis. We explore how transformative governance of complex biodiversity–climate–society interactions can be achieved, drawing on the first joint report between the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to reflect on the current opportunities, barriers, and challenges for transformative governance. We identify principles for transformative governance under a biodiversity–climate–society nexus frame using four case studies: forest ecosystems, marine ecosystems, urban environments, and the Arctic. The principles are focused on creating conditions to build multifunctional interventions, integration, and innovation across scales; coalitions of support; equitable approaches; and positive social tipping dynamics. We posit that building on such transformative governance principles is not only possible but essential to effectively keep climate change within the desired 1.5 degrees Celsius global mean temperature increase, halt the ongoing accelerated decline of global biodiversity, and promote human well-being.

Protection and restoration of coastal habitats yield multiple benefits for urban residents as sea levels rise

Globally, rising seas threaten massive numbers of people and significant infrastructure. Adaptation strategies increasingly incorporate nature-based solutions. New science can illuminate where these solutions are appropriate in urban environments and what benefits they provide to people. Together with stakeholders in San Mateo County, California, USA, we co-developed nature-based solutions to support adaptation planning. We created six guiding principles to shape planning, summarized vulnerability to sea-level rise and opportunities for nature-based solutions, created three adaptation scenarios, and compared multiple benefits provided by each scenario. Adaptation scenarios that included investments in nature-based solutions deliver up to eight times the benefits of a traditionally engineered baseline as well as additional habitat for key species. The magnitude and distribution of benefits varied at subregional scales along the coastline. Our results demonstrate practical tools and engagement approaches to assessing the multiple benefits of nature-based solutions in an urban estuary that can be replicated in other regions.

Drivers of tropical forest loss between 2008 and 2019

During December 2020, a crowdsourcing campaign to understand what has been driving tropical forest loss during the past decade was undertaken. For 2 weeks, 58 participants from several countries reviewed almost 115 K unique locations in the tropics, identifying drivers of forest loss (derived from the Global Forest Watch map) between 2008 and 2019. Previous studies have produced global maps of drivers of forest loss, but the current campaign increased the resolution and the sample size across the tropics to provide a more accurate mapping of crucial factors leading to forest loss. The data were collected using the Geo-Wiki platform (www.geo-wiki.org) where the participants were asked to select the predominant and secondary forest loss drivers amongst a list of potential factors indicating evidence of visible human impact such as roads, trails, or buildings. The data described here are openly available and can be employed to produce updated maps of tropical drivers of forest loss, which in turn can be used to support policy makers in their decision-making and inform the public.

What evidence exists on the links between natural climate solutions and climate change mitigation outcomes in subtropical and tropical terrestrial regions? A systematic map protocol

Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed.

Agroecological Transitions: A Systematic Review of Research Approaches and Prospects for Participatory Action Methods

There have been many calls for an agroecological transition to respond to food shocks and crises stemming from conventional food systems. Participatory action research and transformative epistemologies, where communities are research actors rather than objects, have been proposed as a way to enhance this transition. However, despite numerous case studies, there is presently no overview of how participatory approaches contribute to agroecological transitions. The present article therefore aims to understand the effect of applying participatory action research (PAR) in agroecology. We undertook a systematic review of articles reporting methods and results from case studies in agroecological research. On the one hand, our systematic review of 347 articles shows that the agroecological research scope is broad, with all three types—as science, a set of practices and social movement—well-represented in the corpus. However, we can see a clear focus on agroecology “as a set of practices” as the primary type of use of the concept. On the other hand, we found a few case studies (23) with a participatory approach while most studies used extractive research methods. These studies show that understanding the drivers and obstacles for achieving an agroecological transition requires long-term research and trust between researchers and farmers. Such transformative epistemologies open doors to new questions on designing long-term PAR research in agroecology when confronted with a short-term project-based society.

Determination of land restoration potentials in the semi-arid areas of Chad using systematic monitoring and mapping techniques

The restoration of degraded lands has received increased attention in recent years and many commitments have been made as part of global and regional restoration initiatives. Well-informed policy decisions that support land restoration, require spatially explicit information on restoration potentials to guide the design and implementation of restoration interventions in the context of limited resources. This study assessed ecosystems indicators of land degradation using a systematic approach that combines field surveys and remote sensing data into a set of multi-criteria analyses to map restoration potentials in the semi-arid areas. The indicators considered were soil organic carbon, erosion prevalence, enhanced vegetation index, Normalized differences water index and the Net Primary productivity. Three classes of restoration potential were established: (1) areas not in need of immediate restoration due low degradation status, (2) areas with high potential for restoration with moderate efforts required and (3) areas in critical need of restoration and require high level of efforts. Of the total area of the study site estimated at 88,344 km2, 59,146.12 km2, or 66.94% of the theoretically recoverable area, was considered suitable for restoration, of which 38% required moderate efforts while 28% require less efforts. The recoverable areas suitable for restoration could be restored through tree planting, soil and water conservation practices, farmers managed natural regeneration, and integrated soil fertility management. These results can help to spatially identify suitable multifunctional restoration and regeneration hotspots as an efficient way to prioritize restoration interventions in the context of limited resources.

Assessing soil and land health across two landscapes in eastern Rwanda to inform restoration activities

Land degradation negatively impacts water, food, and nutrition security and is leading to increased competition for resources. While landscape restoration has the potential to restore ecosystem function, understanding the drivers of degradation is critical for prioritizing and tracking interventions. We sampled 300–1000 m2 plots using the Land Degradation Surveillance Framework across Nyagatare and Kayonza districts in Rwanda to assess key soil and land health indicators, including soil organic carbon (SOC), erosion prevalence, vegetation structure and infiltration capacity, and their interactions. SOC content decreased with increasing sand content across both sites and sampling depths and was lowest in croplands and grasslands compared to shrublands and woodlands. Stable carbon isotope values (δ13C) ranged from −15.35 ‰ to −21.34 ‰, indicating a wide range of historic and current plant communities with both C3 and C4 photosynthetic pathways. Field-saturated hydraulic conductivity (Kfs) was modeled, with a median of 76 mm h−1 in Kayonza and 62 mm h−1 in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand, and erosion had negative effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of soil erosion and SOC at 30 m resolution were produced with high accuracy and showed strong variability across the study landscapes. These data demonstrate the importance of assessing multiple biophysical properties in order to assess land degradation, including the spatial patterns of soil and land health indicators across the landscape. By understanding the dynamics of land degradation and interactions between biophysical indicators, we can better prioritize interventions that result in multiple benefits as well as assess the impacts of restoration options.

Nature’s disvalues: what are they and why do they matter?

This paper expands the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) values framing about nature and its contributions to people by exploring the notion of ‘disvalues’, which pertains to aspects of nature that reduce well being (instrumental disvalues), relationships that are detrimental to a dignified and flourishing life (relational disvalues), or the perception of badness in an absolute sense, regardless of the impact on people (intrinsic disvalues). Shedding light on how people express disvalues helps to better capture their preferences and subjective perspectives, as well as account for the socioenvironmental positions from which they speak. Considering the full spectrum of disvalues opens up new ways to better identify social–ecological trade-offs, a necessary step for seeking solutions and finding common ground on sustainability and justice.

National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017

Background
Human impacts on earth-system processes are overshooting several planetary boundaries, driving a crisis of ecological breakdown. This crisis is being caused in large part by global resource extraction, which has increased dramatically over the past half century. We propose a novel method for quantifying national responsibility for ecological breakdown by assessing nations’ cumulative material use in excess of equitable and sustainable boundaries.

Methods
For this analysis, we derived national fair shares of a sustainable resource corridor. These fair shares were then subtracted from countries’ actual resource use to determine the extent to which each country has overshot its fair share over the period 1970–2017. Through this approach, each country’s share of responsibility for global excess resource use was calculated.

Findings
High-income nations are responsible for 74% of global excess material use, driven primarily by the USA (27%) and the EU-28 high-income countries (25%). China is responsible for 15% of global excess material use, and the rest of the Global South (ie, the low-income and middle-income countries of Latin America and the Caribbean, Africa, the Middle East, and Asia) is responsible for only 8%. Overshoot in higher-income nations is driven disproportionately by the use of abiotic materials, whereas in lower-income nations it is driven disproportionately by the use of biomass.

Interpretation
These results show that high-income nations are the primary drivers of global ecological breakdown and they need to urgently reduce their resource use to fair and sustainable levels. Achieving sufficient reductions will likely require high-income nations to adopt transformative post-growth and degrowth approaches.

Natural and financial impacts of payments for forest carbon offset: A 14 year-long case study in an indigenous community in Panama

To counteract undesirable impacts of climate change, several different mitigation instruments have been proposed to sequester carbon through reforestation or avert greenhouse gas emissions due to land use change through forest carbon offset projects. Such projects will require an explicit focus on equitable benefit sharing to generate sustainable and alternative livelihoods. However, research on the impacts of forest carbon offset projects for individuals and communities has often been conducted without baseline data or counterfactuals built into the research methods. We conducted a study in a small Indigenous community in eastern Panama with participants and non-participants in a forest carbon offset project, across wealth groups. In this mixed methods study, participants and non-participants completed surveys before, during, and after implementation over 14 years to assess changes to natural and financial assets. We also assessed major concerns and perceived benefits of the carbon offset project via open-ended questions. Quantitative data show that participants continued to engage in reforestation practices even after payment cessation. Quantitative data also suggest carbon offset payments provided financial stability for poorer participants to diversify into other sources of income over time, while income inequality remained stable across wealth groups. Qualitative data indicate that the greatest benefit of the carbon offset project for participants was economic security for future generations, while concerns about basic needs like food and money declined over time for both participants and non-participants. This research suggests that forest carbon offset projects can be effective for encouraging long-term adoption of forestry practices, specifically reforestation and agroforestry, while providing social co-benefits for rural livelihoods, across wealth dimensions.

The Unseen Effects of Deforestation: Biophysical Effects on Climate

Climate policy has thus far focused solely on carbon stocks and sequestration to evaluate the potential of forests to mitigate global warming. These factors are used to assess the impacts of different drivers of deforestation and forest degradation as well as alternative forest management. However, when forest cover, structure and composition change, shifts in biophysical processes (the water and energy balances) may enhance or diminish the climate effects of carbon released from forest aboveground biomass. The net climate impact of carbon effects and biophysical effects determines outcomes for forest and agricultural species as well as the humans who depend on them. Evaluating the net impact is complicated by the disparate spatio-temporal scales at which they operate. Here we review the biophysical mechanisms by which forests influence climate and synthesize recent work on the biophysical climate forcing of forests across latitudes. We then combine published data on the biophysical effects of deforestation on climate by latitude with a new analysis of the climate impact of the CO2 in forest aboveground biomass by latitude to quantitatively assess how these processes combine to shape local and global climate. We find that tropical deforestation leads to strong net global warming as a result of both CO2 and biophysical effects. From the tropics to a point between 30°N and 40°N, biophysical cooling by standing forests is both local and global, adding to the global cooling effect of CO2 sequestered by forests. In the mid-latitudes up to 50°N, deforestation leads to modest net global warming as warming from released forest carbon outweighs a small opposing biophysical cooling. Beyond 50°N large scale deforestation leads to a net global cooling due to the dominance of biophysical processes (particularly increased albedo) over warming from CO2 released. Locally at all latitudes, forest biophysical impacts far outweigh CO2 effects, promoting local climate stability by reducing extreme temperatures in all seasons and times of day. The importance of forests for both global climate change mitigation and local adaptation by human and non-human species is not adequately captured by current carbon-centric metrics, particularly in the context of future climate warming.

Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario

Meeting the Paris Agreement’s climate objectives will require the world to achieve net-zero CO2 emissions around or before mid-century. Nature-based climate solutions, which aim to preserve and enhance carbon storage in terrestrial or aquatic ecosystems, could be a potential contributor to net-zero emissions targets. However, there is a risk that successfully stored land carbon could be subsequently lost back to the atmosphere as a result of disturbances such as wildfire or deforestation. Here we quantify the climate effect of nature-based climate solutions in a scenario where land-based carbon storage is enhanced over the next several decades, and then returned to the atmosphere during the second half of this century. We show that temporary carbon sequestration has the potential to decrease the peak temperature increase, but only if implemented alongside an ambitious mitigation scenario where fossil fuel CO2 emissions were also decreased to net-zero. We also show that non-CO2 effects such as surface albedo decreases associated with reforestation could counter almost half of the climate effect of carbon sequestration. Our results suggest that there is climate benefit associated with temporary nature-based carbon storage, but only if implemented as a complement (and not an alternative) to ambitious fossil fuel CO2 emissions reductions.

Inclusive conservation and the Post-2020 Global Biodiversity Framework: Tensions and prospects

The draft Post-2020 Global Biodiversity Framework commits to achievement of equity and justice outcomes and represents a “relational turn” in how we understand inclusive conservation. Although “inclusivity” is drawn on as a means to engage diverse stakeholders, widening the framing of inclusivity can create new tensions with regard to how to manage protected areas. We first offer a set of tensions that emerge in the light of the relational turn in biodiversity conservation. Drawing on global case examples applying multiple methods of inclusive conservation, we then demonstrate that, by actively engaging in the interdependent phases of recognizing hybridity, enabling conditions for reflexivity and partnership building, tensions can not only be acknowledged but softened and, in some cases, reframed when managing for biodiversity, equity, and justice goals. The results can improve stakeholder engagement in protected area management, ultimately supporting better implementation of global biodiversity targets.

Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests

Sustainable management of intact tropical peatlands is crucial for climate change mitigation, for biodiversity conservation and to support the livelihoods of local communities. Here, we explore whether sustainable fruit harvesting from Mauritia flexuosa palms could support these linked goals by increasing fruit production and incomes across the 2.8 million hectares of the most carbon-dense ecosystem in Amazonia: the lowland peatlands of northeastern Peru. M. flexuosa is dioecious, and fruits are typically harvested by felling female palms; the proportion of female palms therefore provides a good indicator of the health of a stand. Across 93 widely distributed sites, we found that the proportion of female palms increases with travel time to the urban market, and overall, fruit harvesting has halved the current potential production and income from this resource. However, significantly more female palms are found where fruit are harvested by climbing. We estimate that region-wide uptake of climbing could eventually increase potential fruit production by 51% and increase its gross value to US$62 ± 28.2 million yr–1. These findings demonstrate the high cost of unsustainable resource extraction in Neotropical forests and outline a practical path to conserve and sustainably exploit one of the most carbon-rich landscapes on the planet.

Making green pledges support biodiversity: Nature-based solution design can be informed by landscape ecology principles

To address climate change and meet global commitments, nature-based climate (NbCS) solutions i.e. actions that aim to address climate change in sustainable way, are becoming increasingly popular. This is often expressed in so called “green pledges” that promote large scale programs of tree planting, often in plantations. Establishment of such plantations could deliver benefits to biodiversity, but this is not guaranteed, and recommendations on how to manage nature-based solutions (NbS) for biodiversity are limited and not embedded in scientific knowledge. Evidence from landscape ecology can inform general principles of NbCS design. Here, we synthesise evidence and make recommendations that can help “green pledges” to benefit biodiversity conservation. We call for an integrated approach, where NbCS tree planting projects move beyond carbon storage to create functional and diverse habitats providing multiple long-term services while safeguarding biodiversity.

Assessing urban ecosystem services to prioritise nature-based solutions in a high-density urban area

Nature-based solutions have emerged as a concept for integrating ecosystem-based approaches whilst addressing multiple sustainable development goals. However, implementing nature-based solutions is inherently complex and requires consideration of a range of environmental and socio-economic conditions that may impact on their effectiveness. This research assesses ecosystem services within the Valletta urban agglomeration, Malta, and evaluates the implications arising from existing distributional patterns. Proxy-based indicators and expert knowledge were used to map and assess a set of 14 ecosystem services. Proximity and correlation analyses were used to assess distributional inequalities arising from differentiated availability of ecosystem types with high ecosystem service capacities for groups with different socio-economic characteristics. Data relating to schooling, employment, sickness, disability, and old age, were combined to identify areas of relative advantage and disadvantage. The highest ecosystem service capacities were in the urban fringes and the lowest in dense urban cores. Private gardens and urban trees had the highest regulating ecosystem service capacities per unit area. Contrastingly, public gardens had low effectiveness for regulating ecosystem services but the highest cultural ecosystem service capacities. Availability of urban green infrastructure and tree cover differ according to socio-economic advantage, and disadvantaged communities generally had reduced proximity to ecosystems with high ecosystem service capacities. Considering these findings, we argue that urban ecosystem service assessments can support greening strategies by identifying the most effective nature-based solutions that can play a redistributive role by addressing existing inequalities in green infrastructure and ecosystem services capacities distribution in cities.

What are Nature-based solutions (NBS)? Setting core ideas for concept clarification

Although nature-based solutions (NBS) have been promoted as a key tool for solving diverse environmental and societal problems, the concept and its practical applications remain unclear. This ambiguity is linked to the fact that the NBS concept has emerged from the integration of multiple scientific fields. In addition, there has been a delay in establishing clear standards for NBS, hence a number of actions that today would be seen as complementary or related measures, are frequently branded as NBS. Thus, this paper paves the way to clarify NBS by identifying their core features and formulating criteria to exclude certain actions from the set of NBS. After reviewing 20 definitions of NBS, these actions are identified as interventions that: (1) are inspired and powered by nature; (2) address (societal) challenges or resolve problems; (3) provide multiple services/benefits, including biodiversity gain; and (4) are of high effectiveness and economic efficiency. The non-systematic review includes both peer-review research papers and relevant official reports, enabling the formulation of a set of criteria that exclude green/blue interventions from the set of NBS. These are: (1) lack of functioning ecosystems; (2) random actions; (3) post-implementation goal(s); (4) negative/no impact on biodiversity; (5) same benefits as grey infrastructure alone; (6) unfair distribution of benefits; (7) ‘copy-paste’ implementation approach; (8) top-down model of governance; (9) static management approach; (10) financial expenses disproportionate to benefits; and (11) ‘point scale’ approach. Ongoing and future practice will contribute to our understanding of the long-term operation of NBS as well as to the detection of synergies and trade-offs, thereby enabling us to better define this concept’s boundaries.

Integrating remote sensing with ecology and evolution to advance biodiversity conservation

Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth’s biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth’s biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.

The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches

Forest restoration is being scaled-up globally to deliver critical ecosystem services and biodiversity benefits, yet we lack rigorous comparison of co-benefit delivery across different restoration approaches. In a global synthesis, we use 25,950 matched data pairs from 264 studies in 53 countries to assess how delivery of climate, soil, water, and wood production services as well as biodiversity compares across a range of tree plantations and native forests. Carbon storage, water provisioning, and especially soil erosion control and biodiversity benefits are all delivered better by native forests, with compositionally simpler, younger plantations in drier regions performing particularly poorly. However, plantations exhibit an advantage in wood production. These results underscore important trade-offs among environmental and production goals that policymakers must navigate in meeting forest restoration commitments.

A PES scheme promoting forest biodiversity and carbon sequestration

Forests can play a significant role both in halting biodiversity loss and in mitigating climate change. A variety of payments for ecosystem services (PES) schemes exists to promote biodiversity conservation in forests. These schemes could be used to strengthen the role of forests as carbon sinks as well. This paper analyzes the implications of supplementing a PES scheme that targets boreal forest biodiversity with a carbon index. We use a site selection framework to examine how the proposed scheme impacts the promotion of both targets. We compare a case where the selection is done solely based on biodiversity values to a case where the selection is done based on both biodiversity and carbon benefits. The carbon index is formulated as current carbon storage or as future carbon sink. Correspondingly, biodiversity is maximized based on either current ecological values or potential ones. We compare equal or differing weights for biodiversity and carbon indexes, and examine trade-offs between biodiversity and CO2 in current and future values. Combined index values increase with the carbon index, but there is a trade-off between biodiversity and CO2 values if the conservation budget is not increased when the carbon index is introduced. There is a temporal trade-off in biodiversity and carbon values between selecting sites based on current or future values. Younger stands are preferred at the expense of old-growth stands with the carbon index. Weights can be used to balance the trade-off between biodiversity and carbon benefits. Overall, risks to losing significant ecological value from the conservation network are negligible, but the limited number of sites decreases the generalizability of the results.

Identifying Spatial Patterns and Ecosystem Service Delivery of Nature-Based Solutions

Compared to technical infrastructure, nature-based solutions, NBS, strive to work with nature and to move beyond business-as-usual practices in order to address societal challenges such as flood risks. This research aims to spatially identify possible NBS areas and evaluate the areas capacity to provide selected ecosystem services, ES, for the Lahn river landscape in Germany. The research follows the functional landscape approach using hydromorphological landscape units, HLU, based on specific biophysical spatial criteria, such as slope, to then identify locations which may be considered suitable for NBS. The current ES delivery of these possible NBS areas is then evaluated. The three ES assessed are carbon storage, nutrient retention and recreation. We then undertake a geospatial comparison analysis to show the spatial relationships and patterns that emerge in regards to the ES configuration of the distinct NBS apt areas. Results show the HLU method serves to delineate and identify areas where NBS may exist or be implemented. The data depicts a distinct spatial pattern for each possible NBS space and complementary ES delivery. This explorative method is a useful spatial approach that can support NBS implementation and serve to investigate the multiple benefits NBS provide. The use of ecosystem services to compare and understand NBS is a viable prospect that must, however, be cautiously, locally and scientifically approached. Noticeable limitations regarding ES assessment remain, as available methods are often insufficiently inclusive of natural ecosystem processes and functions. Further research should assess a broader spectrum of NBS and their delivery of ES.

Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale

The new frontiers of sustainable cities should focus on urban planning tools and strategies that are able to integrate ecosystem services in urban development. An important step could include the design of nature-based solutions (NbSs) for introducing important ecological functions aiding human well-being and mitigating the loss of soil. In this study, we propose a methodology to analyse, in a spatial way, the effect of land use scenarios generated by urban planning in the provision of ecosystem services. The methodology analyses the variation of ecosystem services, considering the ecosystem services of the study area and their potential roles in changing the functions of planned urban actions as the starting point. One scenario of analysis includes the integration of NbSs into urban planning. The case study is that of a peri-urban area, characterized by an agroecosystem, which is intended for urban development in the municipality of Gallipoli, Southern Italy. The analysis highlights a low provision of ecosystem services by the agroecosystem, which has had the effect of important olive trees being destroyed by Xylella fastidiosa bacteria. Thus, the integration of NbSs and reducing the construction of buildings in the urban neighbourhood plan could improve the quantity of ecosystem services in the area. Moreover, the ecological design of ecosystem services could improve the typology of ecosystem services provision in the area in consideration of the starting points. Therefore, the analysis of the capacity to integrate ecosystem services in urban planning at the neighbourhood scale could be a tool of ecological urban design, useful to support the decision-making processes.

Toward Indigenous visions of nature-based solutions: an exploration into Canadian federal climate policy

Political traction for nature-based solutions is rapidly growing as governments recognize their role in addressing the simultaneous climate and biodiversity crises. While there has been recognition of the role of Indigenous Peoples in nature-based solutions, there has also been limited academic review on their relationship. This paper explores how the Government of Canada’s conceptualization of nature-based solutions either support or prevent Indigenous sustainable self-determination. Drawing on past policy frameworks, we construct a novel four-dimensional sustainable self-determination policy lens focused on: Indigenous knowledge systems; Indigenous jurisdiction over land; the full and effective participation of Indigenous Peoples; and Indigenous Peoples as rights-holders to review a total of nine federal climate policy, planning, and science documents. Our analysis shows that while there is growing recognition of Indigenous rights, inclusion of Indigenous knowledge, and commitments to include the participation of Indigenous Peoples in the implementation of certain climate activities, there is a clear unwillingness to recognize Indigenous jurisdiction and Indigenous understandings of land as systems of reciprocal relations. Reframing nature-based solutions in the context of Canadian and international climate policy is essential not only to advance the self-determination of Indigenous Peoples, but also to create the ceremonial ground for Indigenous visions of nature-based solutions in order to address these joint crises.

Citizen participation in the governance of nature-based solutions

The last half-a-century has seen a marked demand for authentic citizen participation in public policy-and decision-making, not least in the field of sustainability. The depth and forms of citizen engagement in nature-based solutions (NBS), for example, and how such participation shapes their trajectories is gaining increasing attention. In this paper, we analyze current forms and implications of citizen participation in 58 NBS case studies conducted in 21 cities in the light of supporting wider sustainability goals. Our results show that while tokenistic forms dominate citizen participation across a variety of NBS contexts, collaborative multi-stakeholder forms of engagement do not automatically lead to enhanced ecological functions. Deeper forms of engagement, however, strengthen and diversify both expected and unexpected social outcomes, including social learning, enhanced sense of belonging, environmental stewardship, and inclusiveness and equity, in general. Driven by neoliberal austerity logic governments often cede power to NBS promoters whose interests predefine an intervention’s vision of nature. Deeper levels of participation are hence limited by inherent institutional structures, neoliberal regimes and the lack of trust among actors involved. These limitations can be partially bridged by strengthening relational and reflexive capacities of public institutions. Focusing on the process of citizen engagement and creating multiple arenas for discussion could bring out new voices and narratives and also transform the culture of participation.