Can mangroves keep pace with contemporary sea level rise? A global data review

Coastal vegetated wetlands such as mangrove forests provide multiple ecosystem services, though are potentially threatened by contemporary accelerated sea level rise (SLR), in addition to other immediate threats such as agriculture and coastal development. Several studies have revealed that mangroves are able to adapt to, and keep pace with local relative SLR through vertical surface elevation change (SEC), however data are lacking, with often only surface accretion rate (SAR) data available. We systematically review published studies of SEC and SAR from globally distributed monitoring sites using meta-analysis, and compare them with the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) SLR scenarios. Hydro-geomorphic setting plays an important role, with basin mangroves potentially less vulnerable to SLR through land building processes. We find that SAR in both basin and fringe mangroves can cope with low SLR scenario (RCP 2.6) throughout the 100 years projection period. However, SAR can only keep pace with high SLR scenario (RCP 8.5) up to year 2070 and 2055 in basin and fringe mangrove settings respectively. These were associated with potential sediment accumulation of 41 cm and 29 cm respectively from the baseline. Mangrove degradation promoted lowering trends of SEC, while mangrove management such as rehabilitation practice stimulated positive trends of SEC. Mangrove ecosystems may be vulnerable to contemporary SLR in small island locations such as the Caribbean, East Africa and parts of the Indo-Pacific that are dominated by fringe mangroves and where SEC cannot keep pace with both low and high IPCC AR5 SLR scenarios. A global expansion of current mangrove surface elevation monitoring effort is urgently needed in order to better assess the vulnerability of mangroves, and the factors affecting their resiliency in the face of rising sea levels.

The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment

Soil organic matter (SOM) plays an important role in terrestrial ecosystems and agroecosystems. Changes in the agricultural sector in the Czech Republic within the past 25 years have had a negative impact on SOM content and contribute to gradual soil degradation. The aim of this study is to estimate the effect of long-term application of different mineral fertilizers (NPK) and organic manures (manure, cattle slurry) on soil chemical properties (quality of humus, available nutrients, and soil reaction). Soil samples were collected from Luvisol during two selected periods 1994–2003 and 2014–2016 from long-term field experiment carried out in Prague-Ruzyně (Czech Republic). Average annual temperature is 8.5 °C, and annual precipitations are 485 mm. Different fertilization regimes have been applied for 62 years. The crop rotation was as follows: cereals (45%), root crops (33%) and legumes (22%). Soil analysis—soil organic carbon (SOC) was determined by oxidimetric titration method. Short fractionation method for evaluation of humic substance (HS), humic acid (HA) and fulvic acid (FA) content was used. Absorbance of HS in UV-VIS spectral range was measured by Varian Carry 50 Probe UV-VIS spectrometer. Degree of humification (DH) and color index (Q4/6) were calculated from fractional composition data. Soil reaction was measured by potentiometric method. Available nutrients (phosphorus, potassium, magnesium, calcium) were determined by Mehlich II and Mehlich I methods and by ICP-OES. For data analysis, the following are used: exploratory data analysis, ANOVA, and principal component analysis (PCA). PCA analysis differentiated fertilizers into two categories: (1) variant NPK (lower quality of humus)—higher acidity, lower SOC and HS content, predomination of FA, higher DH and lower content of available nutrients; (2) variants with organic manures (higher quality of humus)—lower acidity, higher SOC and HS content, predomination of HA, middle DH, and high content of available nutrients. The main result of presented study is to give a synthesis of effect of different type of fertilizers on a sustainable organic matter management in arable soils, with respect to yields, food security and adaptation to predict climate changes. Long-term application of mineral fertilizers (NPK) without organic matter input can accelerate humus mineralization and soil quality degradation with all negative consequences such as (nitrogen leaching, higher availability of toxic element for plants, slow energy for soil microorganisms etc.). Application of organic fertilizers (manure and cattle slurry) helps to achieve the long-term stable yields while maintaining soil at optimum quality (long-term sustainable management with SOM). Principal component analysis is a useful tool for evaluation of soil quality changes.

Agroforestry Systems as Alternative Land-Use Options in the Arid Zone of Thal, Pakistan

Agroforestry offers unique opportunities for increasing biodiversity, preventing land degradation, and alleviating poverty, particularly in developing countries, but factors explaining the adoption by farmers are not well understood. A survey of 524 farm households was conducted in Bhakkar district of Punjab, Pakistan to study factors that determine the adoption of agroforestry on the sand dunes in the resource-deficient region of Thal. Two types of agroforestry systems were studied: intercropping and border cropping (also known as boundary or perimeter planting). Both agroforestry systems included irrigated cultivation of the timber trees Eucalyptus camaldulensis (local name: sufeda) and Tamarix aphylla (local name: sars) with wheat, chickpeas (Cicer arietinum) (local name: chana) or cluster beans (Cyamous tetragocalobe) (local name: guars). The majority of the farmers was in favour of intercropping and border cropping. Most farmers reported the protection of nearby crops from dust storms as the most important positive perception about both agroforestry systems. Age, education, and farm to market distance were significant determinants of agroforestry adoption. Older and less-educated farmers, with farms closer to markets were less likely to adopt tree planting or border cropping in Thal. In general, the agroforestry systems examined were more likely to be adopted by farmers who can wait 3–4 years for harvesting crop outputs, but not by poorer farmers who are totally dependent on subsistence agriculture and cannot afford the high initial cost of agroforestry establishment, nor can they wait for crop output for extended periods. Furthermore, the adoption of both agroforestry systems was more likely in remote marginal areas than in areas close to markets. To increase agroforestry adoption rates, government policies should strengthen farmers’ knowledge of every stage of agroforestry through extension services, focusing particularly among the prime prospects, i.e. farmers who will be most likely to adopt agroforestry. Once the prime prospects have adopted it, the older, less-educated, and poor farmers of the rural population can be also focused on to motivate adoption.

Gender, nutrition- and climate-smart food production: Opportunities and trade-offs

Future food and nutrition security is threatened by climate change, overexploitation of natural resources and pervasive social inequalities. Promising solutions are often technology-focused and not necessarily developed considering gender and social disparities. This paper addresses issues of gender and human development opportunities and trade-offs related to promoting improved technologies for agricultural development. We examined these aspects for conservation agriculture (CA) as part of a cropping system with nutrition- and climate-smart potential. The paper is based on a literature review and field experiences from Zambia and Mexico. Findings point up situations where the promotion of CA for smallholders in developing countries may have undesired effects from gender and human development perspectives, specifically relating to drudgery, nutrition and food security, residue use, assets, mechanization and extension. The direction and magnitude of potential trade-offs depend on the local context and the specific intervention. The analysis is followed by a discussion of opportunities and pathways for mitigating the trade-offs, including gender transformative approaches; engagement with alternative or non-traditional partners with different but complementary perspectives and strengths; “smart” combinations of technologies and approaches; and policies for inclusive development.

Considering evolutionary processes in adaptive forestry

Managing forests under climate change requires adaptation. The adaptive capacity of forest tree populations is huge but not limitless. Integrating evolutionary considerations into adaptive forestry practice will enhance the capacity of managed forests to respond to climate-driven changes. Focusing on natural regeneration systems, we propose a general framework that can be used in various and complex local situations by forest managers, in combination with their own expertise, to integrate evolutionary considerations into decision making for the emergence of an evolution-oriented forestry. We develop a simple process-based analytical grid, using few processes and parameters, to analyse the impact of forestry practice on the evolution and evolvability of tree populations. We review qualitative and, whenever possible, quantitative expectations on the intensity of evolutionary drivers in forest trees. Then, we review the effects of actual and potential forestry practice on the evolutionary processes. We illustrate the complexity of interactions in two study cases: the evolutionary consequences for forest trees of biotic interactions and of highly heterogeneous environment. Evolution-oriented forestry may contribute adapting forests to climate change. It requires combining short-term and long-term objectives. We propose future lines of research and experimentation.

Water and Soil Conservation for Improved Crop Productivity and Water Household in Sahelian Conditions

Over the last decades, desertification, drought and erratic rainfall have become much debated and distressing issues for Niger, given the country’s reliance on natural resources and agriculture for livelihood. A decisive answer on the causes and extent of both meteorological and soil water drought is therefore of importance to enable effective policy and resilience, but adaption to future climate change often entails the very same practices as rehabilitating degraded land to enhance water productivity. This paper investigates the extent of both meteorological and soil water drought in Niger by combining rainfall and soil water analysis and assesses the potential of various small scale WSC techniques to tackle crop growth limitations in Niger. It presents a trend analysis of rainfall and drought parameters and compares the effect of 5 treatments (zai + manure, demi-lunes + manure, no till with scarification + manure, control + manure and control) on crop performance and soil moisture profiles. The WSC-treatments zai and demi-lunes produce significantly higher yields due to increased soil moisture levels throughout the season. Besides the improved soil moisture conditions, the potential of WSC practices to increase the agronomic efficiency is also largely explained by their impact on the soil nutrient status.

Ecosystem-Based Approaches Toward a Resilient Society in Harmony with Nature

Ecosystem-based approaches have proven effective and efficient in reducing disaster risks while ensuring continued benefits to people from ecosystem services. In this article, a new concept of Ecosystem-based Disaster Risk Reduction (Eco-DRR) for enhancing social-ecological resilience is proposed, based on analysis of several case studies. Field studies in developing countries such as Ghana and Myanmar have shown the benefits of Eco-DRR as implemented by local communities. These projects improve local livelihoods and social-ecological resilience. In Japan, after the massive damage from the 11 March 2011, Great East Japan earthquake and tsunami, ecosystem-based approaches were an important element of the national government’s DRR efforts. Analysis of these cases shows that Eco-DRR is a socially, economically and environmentally sustainable tool for DRR that creates new value for a region. It also shows the importance of multi-stakeholder participation in the process of promoting Eco-DRR. It is likely to become even more important in the future, as a means for addressing the increase in disasters resulting from climate and ecosystem change as well as demographic change. The contribution of Eco-DRR to maintaining and restoring ecosystems is particularly valuable for countries where there is reduced capacity for land management, as currently occurring in Japan due to rapid population decline and aging.

Desertification, Adaptation and Resilience in the Sahel: Lessons from Long Term Monitoring of Agro-ecosystems

The desertification paradigm has a long history in the Sahel, from colonial to modern times. Despite scientific challenge, it continued to be influential after independence, revived by the dramatic droughts of the 1970s and 1980s, and was institutionalized at local, national and international levels. Collaborative efforts were made to improve scientific knowledge on the functioning, environmental impact and monitoring of selected agricultural systems over the long term, and to assess trends in the ecosystems, beyond their short term variability. Two case studies are developed here: the pastoral system of the arid to semi-arid Gourma in Mali, and the mixed farming system of the semi-arid Fakara in Niger. The pastoral landscapes are resilient to droughts, except on shallow soils, and to grazing, following a non-equilibrium model. The impact of cropping on the landscape is larger and longer lasting. It also induces locally high grazing pressure that pushes rangeland resilience to its limits. By spatial transfer of organic matter and mineral, farmers’ livestock create patches of higher fertility that locally enhance the system’s resilience. The agro-pastoral ecosystem remains non-equilibrial provided that inputs do not increase stocking rates disproportionately. Remote sensing confirms the overall re-greening of the Sahel after the drought of the 1980s, contrary to the paradigm of desertification. Ways forward are proposed to adapt the pastoral and mixed farming economies and their regional integration to the context of human and livestock population growth and expanding croplands.

Enhanced Adaptive Management: Integrating Decision Analysis, Scenario Analysis and Environmental Modeling for the Everglades

We propose to enhance existing adaptive management efforts with a decision-analytical approach that can guide the initial selection of robust restoration alternative plans and inform the need to adjust these alternatives in the course of action based on continuously acquired monitoring information and changing stakeholder values. We demonstrate an application of enhanced adaptive management for a wetland restoration case study inspired by the Florida Everglades restoration effort. We find that alternatives designed to reconstruct the pre-drainage flow may have a positive ecological impact, but may also have high operational costs and only marginally contribute to meeting other objectives such as reduction of flooding. Enhanced adaptive management allows managers to guide investment in ecosystem modeling and monitoring efforts through scenario and value of information analyses to support optimal restoration strategies in the face of uncertain and changing information.

Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

Coastal saltmarsh ecosystems occupy only a small percentage of Earth’s land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this ‘disturbance’ impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural ‘undisturbed’ systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

Investigating whether or not constructed stormwater wetlands need maintenance to sustain performance and the effect of vegetation occupancy in the designed storage volume

Stormwater wetlands (CSWs) have become one of the more popular SCMs, offering a hybrid between larger detention technologies such as wet ponds and newer green infrastructure technologies. A well-functioning stormwater wetland will be a resilient, diverse ecosystem that includes many plant and animal species. This research looks to investigate whether or not wetlands need regular maintenance to sustain their treatment capacity. The research site is located in River Bend, NC. Flow-weighted samples, rainfall, and hydrologic data are being collected at both the inlet and outlet from April 2012 – April 2013, aiming a minimum of 15 storms spaced throughout the year. Monitoring of phosphorus deposition consists of taking soil samples and analyzing for Soil Test Phosphorous. These monitoring results will be compared with the results of a study that was conducted at the same site for a one-year period immediately following construction completion. This will allow researchers to see the effects of no maintenance plan (or activity) and time on wetland performance in removing phosphorus and achieving other wetland performance goals. Vegetation in a CSW is essential for nutrient removal and thermal pollution reduction. However, a portion of the storage volume designed to retain the water quality event is occupied by vegetation, which may result in the CSW being undersized from a hydrologic perspective – especially in unmaintained, mature systems. The fraction of the volume associated with vegetation mass was unknown, and designers have been unsure as to (1) how they should account for volume occupied by vegetation and (2) whether this was a significant design issue. Twelve stormwater wetlands and one hybrid wet pond in North Carolina were sampled to assess their percent vegetative occupancy by volume. A conservative recommended factor of safety is 1.025. Species-specific factors of safety (FOS) were also calculated; at the 30 cm temporary pool elevation, the Iris (Iris spp.) FOS was highest at 1.020 and the mixed vegetation FOS was lowest at 1.005. When designing a wetland, a more specific FOS may be calculated using a weighted average of the FOS for each species in the planting plan. The outcomes of this research allow designers to account for the volume taken up by emergent wetland vegetation; however, the uncertainty in other factors such as discrepancies between designed and as-built bathymetry probably have a greater impact on the design volume loss when compared with vegetation occupancy (<2%). © 2013 American Society of Civil Engineers.