A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA

Crop-livestock-forest (CLFi) and crop-livestock (CLi) systems are among the most recent agricultural developments in Brazil, and aligned with the principles of cleaner production. Such integrated systems can provide at least three types of product from the same land area over a defined period. This paper presents a holistic sustainability evaluation using life cycle assessment to compare combinations of integrated and conventional systems in the Brazilian Cerrado region. The study assesses a comprehensive set of indicators in the three sustainability dimensions: environmental, economic, and social (socio-eco-efficiency). By prioritizing CLFi, the production area to meet the demand of grains, meat and energy for 500 Brazilians, from 2007 to 2014, reached 70 ha, while the conventional systems would need 420 ha to meet the same demand. This result shows that it is possible to increase production to meet the growing food global demand without the need of expanding the agricultural frontier, preserving the remaining forestland. CLFi combinations systems decreased 55% in climate change potential (2389 t of CO2 equivalent), when compared to the conventional systems. It was also observed that the more integrated systems improved the quality of employment, promoted future generation investments in society, and decreased the total production costs in 54%, when compared to conventional systems. Therefore, intensification achieved through good practices such as association, rotation, and succession by an agroforestry system, optimization of inputs (including water, energy, fertilizers, and crop protection agents), land use, soil quality, biodiversity and social aspects

The future of tropical forests under the United Nations Sustainable Development Goals

In September 2015, member states of the United Nations unanimously adopted the Sustainable Development Goals (SDGs)—a set of 17 ambitions for the post-2015 global development agenda. The goals do not offer a prescriptive plan but establish levers of policy action that seek to improve the three pillars of sustainable development: society, environment, and the economy. To facilitate achieving the SDGs, it will be critical to identify context-specific opportunities and challenges for implementation. Tropical regions of the world currently host not only the highest levels of biodiversity but also some of the highest rates of urbanization and development globally. Moreover, tropical forest deforestation is a globally significant issue; it has adverse impacts on biodiversity, climate systems, and socioeconomic equality. Here, we provide a rapid overview and qualitative assessment of the academic and policy literature on development and tropical forests, using the framework of the SDGs to examine issues broadly relevant to both tropical forests and sustainable development. Our assessment gathers existing knowledge and reveals critical knowledge gaps. In doing so, we identify key synergies between SDGs and tropical forests. We also suggest potential pathways of influence to improve social, environmental, and economic conditions in these rapidly developing regions of the world.

Island-wide coastal vulnerability assessment of Sri Lanka reveals that sand dunes, planted trees and natural vegetation may play a role as potential barriers against ocean surges

Since the Indian Ocean tsunami on 26 December 2004, there have been continuous efforts to upgrade the (tsunami) early warning systems as well as their accessibility in local and regional places in South and Southeast Asia. Meanwhile, the protection offered by coastal vegetation like mangroves to the people, property and physical landscape was also recognized and prioritized by both public and private authorities at various governance levels. As more than 90% of the Sri Lankan coastline is vulnerable to water-related impacts and existing bioshields like mangroves are potentially able to protect less than one-third of it, if at all they are in good condition, an attempt was made to build knowledge on the other potential natural barriers along the coast. In this context, a ca. 2 km belt of the entire coast was digitized, classified and assessed for vulnerability in relation to the existing land-use/cover. First, a visually interpreted land-use/cover map comprising 16 classes was developed using Google Earth imagery (Landsat-5, 2003). Second, based on the Global Digital Elevation Model data from the ASTER satellite, the land-use/cover map was further re-classified for elevation demarcation into waterless, run-up and flooded areas. And finally, both vulnerable and less vulnerable areas were identified by taking into account the average wave heights that the 2004 tsunami reached in the country (North: 5.5 m, South: 7 m, East: 5 m and West: 3.75 m). Among the selected areas studied, Jaffna and Kaluvanchikudy-Komari are found to be vulnerable and, Trincomalee, Yala and Puttalam are less vulnerable. While vulnerability was largely associated with the conditions devoid of natural barriers, the less vulnerable areas had mangroves, Casuarina, dense vegetation and/or sand dunes as land cover, all of which might prove effective against ocean surges. However, these land cover types should never be considered as providing full protection against the type of threats that can be expected. As the present study provides only base-line information on island-wide vulnerability of areas to water-related impacts, further investigation and validation along similar research lines are needed to establish a blueprint for future preparedness.

Adaptation and poverty reduction in Mozambique: an opportunity for developing countries to lead

Climate change disproportionately impacts the world’s poorest countries. A recent World Bank report highlighted that over 100 million people are at risk of falling into extreme poverty as a result of climate change. There is currently a lack of information about how to simultaneously address climate change and poverty. Climate change challenges provide an opportunity for those impacted most to come up with new and innovative technologies and solutions. This article uses an example from Mozambique where local and international partners are working side-by-side, to show how developing countries can simultaneously address climate change and poverty reduction using an ecosystem-based adaptation approach. Using ecosystem-based adaptation, a technique that uses the natural environment to help societies adapt to climate change, developing countries can lead the way to improve climate adaptation globally. This paradigm shift would help developing countries become leaders in ecosystem-based adaptation and green infrastructure techniques and has implications for climate policy worldwide.

Louisiana’s 2012 Coastal Master Plan: Overview of a Science-Based and Publicly Informed Decision-Making Process

Louisiana is in the midst of a land loss crisis that has claimed more than 4800 km(2) since the 1930s. Unless aggressive, large-scale action is taken, Louisiana could lose an additional 4500 km(2) in the next 50 years, resulting in a projected increase in annual damages from hurricane storm surge flooding of more than $23 billion. Louisiana’s 2012 Coastal Master Plan is a long-term plan with clear economic, social, and environmental benefits, such as decreasing potential damages from storm surge by $5.3 billion to $18 billion. Implementation of projects in the master plan should result in no net loss of land after 20 years and an annual net gain of land after 30 years. To develop the plan, the Coastal Protection and Restoration Authority (CPRA) utilized a state-of-the-art systems approach to coastal planning and a science-based decision-making process that resulted in a funding- and resource-constrained plan that makes the greatest progress toward achieving a sustainable coast. A series of integrated, coastwide predictive models were developed to provide data for a new planning tool used to identify the suite of projects that would make the greatest progress toward meeting the master plan objectives while considering uncertainties in future environmental conditions. Recognizing that the success of the plan hinges on stakeholder support, as well as science, the CPRA also implemented a comprehensive outreach plan to obtain input and feedback from key stakeholders and the public. The resulting plan recommends a specific list of restoration and protection projects and has achieved widespread support.

Vulnerability resilience in the Major Watersheds of the Korean Peninsula

Water resources management requires policy enforcement in a changing environment. Climate change must be considered in major watershed river restorations in Korea. The aim of river restorations is to provide better water resource control – now and in the future. To aid in policy making in the government sector, ‘vulnerability-resilience indexes’ (VRIs) with a Delphi survey method have been adopted to provide a possible reference. The Delphi survey offers prioritized vulnerability proxy variables based on expert opinions regarding the changing environment in terms of climate change and river restorations. The VRIs of watersheds were improved after river restorations, with the exception of some locations. However, when climate change was taken into consideration in the analysis of conditions after the restorations were completed, the results showed that governments need to provide better mitigation strategies to increase vulnerability resilience in the face of climate change.

Applying Resilience Concepts in Forest Management: A Retrospective Simulation Approach

Increasing the resilience of ecological and sociological systems has been proposed as an option to adapt to changing future climatic conditions. However, few studies test the applicability of those strategies to forest management. This paper uses a real forest health incident to assess the ability of forest management strategies to affect ecological and economic resilience of the forest. Two landscape scale strategies are compared to business as usual management for their ability to increase resilience to a climate-change induced mountain pine beetle outbreak in the Kamloops Timber Supply Area, British Columbia, Canada for the period 1980 to 2060. Proactive management to reduce high risk species while maintaining or increasing diversity through reforestation was found to be more resilient in terms of the metrics: post-disturbance growing stock, improved volume and stability of timber flow, and net revenue. However, landscape-scale indicators of diversity were little affected by management. Our results were robust to uncertainty in tree growth rates and timber value and show that adapting to climate change through improving the resilience of forested landscapes is an economically viable option.

Grazing exclusion to recover degraded alpine pastures needs scientific assessments across the Northern Tibetan Plateau

The northern Tibetan Plateau is the most traditional and important semi-nomadic region in Tibet. The alpine vegetation is sensitive and vulnerable to climate change and human activities, and is also important as an ecological security in protecting the headwaters of major rivers in Asia. Therefore, the Tibetan alpine grasslands have fundamental significance to both Mainland China and South Asia. The pasture degradation, however, likely threatens the livelihood of residents and the habitats of wildlife on this plateau. Since 2004, the government has launched a series of ecological restoration projects and economic compensatory payment polices. Many fences were additionally built on degraded pastures to prevent new degradation, to promote functionality recovery, and to balance the stocking rate with forage productivity. The grazed vs. fenced paired pastures across different zonal grassland communities along evident environmental gradients provide us with a natural comparative experiment platform to test the relative contributions of natural and anthropogenic factors. This study critically reviews the background, significance of and debates on short-term grazing exclusion with fences in this region. We also aim to figure out scientific and standardized workflows for assessing the effectiveness of grazing exclusion and compensatory payments in the future.

Efficiency of conservation agriculture production systems for smallholders in rain-fed uplands of India: A transformative approach to food security

With challenges from global climate change, it is imperative to enhance food production using climate-smart technologies and maximize farm efficiency. Fifty-six households in Rudhiapada and Badamahulidiha, Odisha, India were selected to evaluate farmers’ efficiency using conservation agriculture (CA) cropping system practices. Data envelopment analysis (DEA) and regression analysis were used to estimate farmer efficiency and the determinants of yield. Conventional tillage with the local maize cultivar was compared to reduced tillage with improved maize cultivar and maize intercropped with cowpea. Badamahulidiha outperformed Rudhiapada in yields for all cropping systems. This could be attributed to lower input use and exposure to NGO training. The current efficiency level of farmers’ productivity was between 0.4 and 0.7. Inputs such as labor, seed, and fertilizers were found to be significant in increasing yield except for female labor and phosphate. This finding suggests conservation agriculture cropping system is female friendly. The conservation agriculture cropping systems improved maize yields by 60% to 70% when compared to conventional farming system. Combining conservation agriculture practices with improving efficiency of farmers in optimal use of the inputs can contribute substantially to productivity, thus enhancing food security and nutrition in the face of climate change in India and other tropical areas.

Farmers’ Adaptation Strategies to Climate Change and Their Implications in the Zou Department of South Benin

Climate change is a global phenomenon. Its impact on agricultural activities in developing countries has increased dramatically. Understanding how farmers perceive climate change and how they adapt to it is very important to the implementation of adequate policies for agricultural and food security. This paper aims to contribute to an understanding of farmers’ adaptation choices, determinants of the adaptation choices and the long-term implications of the adaptation choices. Data were collected from 120 respondents in the Zou Department of Benin. A binary logit model was used to analyze the factors influencing household decisions to adapt to climate change. Multinomial logistic regression analysis was estimated to analyze the factors influencing households’ choice of adaptation strategies to climate change. The results show that farmers have a developed perception of climate change. These changes are translated by rainfall disturbances (rainfall delays, early cessation, bad rainfall distribution etc.), shortening of the small dry season, increasing of temperature and sometimes, violent winds. The survey reveals that Benin farmers adopt many strategies in response to climate change. These strategies include “Crop–livestock diversification and other good practices (mulching, organic fertilizer),” “Use of improved varieties, chemical fertilizers and pesticides,” “Agroforestry and perennial plantation” and “Diversification of income-generating activities.” The findings also reveal that most of the respondents use these strategies in combination. From the binary logit model, we know that “farming experience” and “educational level of household head” positively influence adaptation decisions. The result of the multinomial logit analysis shows that farming experience, educational level, farm size and gender have a significant impact on climate change adaptation strategies. Based on in-depth analysis of each strategy, we identify crop diversification and agroforestry as being the most promising strategies with benefits for farmers, the environment and future generations.

Adaptive forest landscape restoration as a contribution to more resilient ecosystems in the Shouf Biosphere Reserve (Lebanon)

The Mediterranean Mosaics Project has the objective to increase the resilience of forest ecosystems in the Shouf Biosphere Reserve (SBR) to climate change. The Project has designed adaptive forest restoration and management plans that were applied in a number of pilot sites over the 3 years of Project implementation: (i) sustainable forest thinning and pruning operations were applied in 18.5 ha of Quercus calliprinos and Pinus brutia forestland; (ii) ecological restoration techniques were tested and demonstrated in 59.11 ha. Seeds and seedlings of about 38 plant species were used, with the objective to restore the forest habitats and ecological processes by which the species populations can self-organize into functional and resilient communities well-adapted to changing climate conditions, while at the same time delivering vital ecosystem services. Ad-hoc plant production protocols were developed to ensure the production of high-quality and well-hardened seedlings. The project has demonstrated the possibility to implement forest restoration without additional water supply to the planted seedlings. The survival rate in the majority of sites after 3 years was between 75% and 100%, with the exception of the direct seed sowing of oak acorns (up to 20%) that were very much affected by rodent predation. Only in instable soil debris direct seed sowing of Quercus acorns has achieved a very high survival rate up to 100%. The key factors of success in the Project forest restoration work were: (i) the availability of high quality plant material from the selected species; (ii) a good preparation of the soil and careful planting of seedlings to facilitate the growth of the root system, and increase soil water retention and storage; (iii) the selection of the right planting period, making sure that soil is sufficiently wet. The Project has also demonstrated the environmental and socio-economic benefits of the combined use of forest thinning and pruning products and agriculture waste (olive pomace and waste wood from fruit tree pruning). Lessons learned from the pilot demonstration actions have opened up new opportunities to influence forestation plans in the Country, and regulate the harvesting of forest biomass and its combined use with agricultural waste to control the risk of forest fires, generate economic benefit and contribute to local livelihoods.

Assisted natural regeneration with fencing central and northern zones of Burkina Faso

Despite their socio-economic importance, forests and other woodland vegetation are declining rapidly in Africa. In the Sahel, climate change and desertification intensify this problem and the local population is lacking woodland resources for daily life. Therefore, there is a need for improved and long-term restoration of degraded ecosystems. The present article investigates an approach of sustainable forest restoration by Assisted Natural Regeneration (ANR) with fencing, a technique adopted by newTree, a Swiss NGO, since 2003 in the Central and Northern zones of Burkina Faso. The present article investigates the effects of ANR on vegetation restoration and on population’s livelihood. Methods include vegetation inventories, literature review, analysis of newTree technical reports from 2003 to 2012, stakeholders’ interviews and cost-benefit examination. Results show a striking development of vegetation within only nine years of protection. Inventories of trees inside and outside fences show that variety of tree species and number of trees is much higher inside the protected areas than outside fencing. Moreover the approach of newTree contributes to farmers’ livelihood improvement by the valorization of non-wood forest products (NWFP) and sustainable agriculture. Costs for fencing are relatively high but on the other hand the approach is very effective by involving the population in a participatory way. The double objective – biodiversity conservation and poverty reduction – can be effectively achieved by the whole approach of newTree using ANR technique. ANR could be applied in areas where tree planting is made difficult by the poverty and the lack of water for the creation of nurseries.

Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment

Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre-Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation-exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.

Conservation Effects on Soil Quality and Climate Change Adaptability of Ethiopian Watersheds

This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub-watersheds of Anjeni: the Minchet sub-watershed (with SWC measures) and the Zikrie sub-watershed (without SWC measures). Soil samples were taken from 30-cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub-watershed had improved quality indicators compared with those from the non-conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg-1 ), Mg2+ (+1·90 cmol(+) kg-1 ), Na+ (+0·10 cmol(+) kg-1 )] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub-watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers’ ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub-watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site-specific conditions.

The Ecological and Financial Impact of Soil Erosion and its Control – A Case Study from the Semiarid Northern Cape Province, South Africa

We analysed the extent of ecological damage of gully and inter‐gully erosion in a sub‐catchment situated in the drylands (300 mm yr−1) of the winter rainfall area of South Africa where small‐stock farming on rangeland is the main source of income. We applied low‐cost measures to revegetate the bare sites of the inter‐gully erosion and stabilised gully erosion by loosening soil surfaces and applying geotextile and constructing check dams to reverse gully erosion. We compared vegetation cover, silt accumulation and penetration resistance of the soil upslope of the check dams with the situation downslope of the check dams and untreated gullies as controls. For the treated bare patches, we compared penetration resistance and vegetation cover with untreated controls. Two years after implementation, the restoration measures resulted in increased soil depth and vegetation cover upslope of the check dams and increased vegetation cover on the treated bare patches. We calculated the net present value of the restoration measures based on the financial benefit that a landowner can realistically expect under current economic and governance conditions (i.e. payment for additional livestock and for C sequestration). At the current rates of return for livestock production or carbon sequestration over a 20‐year period, rehabilitation of this sort is not financially feasible for private landowners. Either the current payment for carbon sequestration would have to be increased by a magnitude of 40–80, or restoration measures would have to be funded by the public or private sector to make them financially viable for landowners.

Adapting fisheries to climate change: community-based and scientific-oriented fisheries management of Saroma Lake, Hokkaido

This chapter presents a case study of Saroma Lake fisheries by highlighting adaptive responses to risk reduction coupled with climate change. Saroma Lake is the southernmost area of seasonal sea ice distribution in the northern hemisphere. Changes in temperature are likely to impact negatively on the ice-covered ecosystem and fishing production in the lake where the fishers need to adapt to the impacts. The case study reveals that innovative efforts performed by the fishers and researchers have been made by applying community-based and scientific-oriented fisheries management. The fishers united together and built an integrated body, leading them to achieve cooperative fishery governance system. The system not only ensures a holistic approach to respond to changes in the lake ecosystem, but also reduces a range of risks through active use of scientific knowledge by employing full-time researchers in their structure as well as strengthening interactions between fishers and outside researchers. The employed researchers work on problems of interest to the fishers and search workable the solutions. Permanent or long-term residency can allow them to interpret concerns of the fishers and act in a leading role in the coordination of adaptive fisheries development. Based on the Saroma Lake experience, this chapter will provide potential initiatives to help develop a pathway for linking fisheries management to risk reduction.

Climate Resilient Villages for Sustainable Food Security in Tropical India: Concept, Process, Technologies, Institutions, and Impacts

The world population is expected to increase by a further three billion by 2050 and 90% of the three billion will be from developing countries that rely on existing land, water, and ecology for food and well-being of human kind. The Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report (AR5) stated that warming of the climate system is unequivocal and is more pronounced since the 1950s. The atmosphere and oceans have warmed, the amounts of snow and ice have diminished, and sea level has risen. Each of the last three decades has been successively warmer at the earth’s surface than any preceding decade since 1850 and the globally averaged combined land and ocean surface temperature data as calculated by a linear trend show a warming of 0.85 degrees C (0.65-1.06 degrees C) over the period of 1880-2012. World Meteorological Organization (WMO) ranked 2015 as the hottest year on record. Climate change poses many challenges to growth and development in South Asia. The Indian agriculture production system faces the daunting task of feeding 17.5% of the global population with only 2.4% of land and 4% of water resources at its disposal. India is more vulnerable to climate change in view of the dependence of huge population on agriculture, excessive pressure on natural resources, and relatively weak coping mechanisms. The warming trend in India over the past 100 years has indicated an increase of 0.6 degrees C, which is likely to impact many crops, negatively impacting food and livelihood security of millions of farmers. There are already evidences of negative impacts on yield of wheat and paddy in some parts of India due to increased temperature, water stress, and reduction in number of rainy days. Significant negative impacts have been projected under medium-term (2020-39) climate change scenario, for example, yield reduction by 4.5-9%, depending on the magnitude and distribution of warming. Since agriculture currently contributes about 15% of India’s gross domestic product (GDP), a negative impact on production implies cost of climate change to roughly range from 0.7% to 1.35% of GDP per year. Indian agriculture, with 80% of farmers being smallholders (<0.5 ha) having diverse socioeconomic backgrounds, is monsoon-dependent rainfed agriculture (58%), about 30% of population undernourished, migration from rural to urban regions, child malnutrition etc., has become more vulnerable with changed climate or variability situations. During the past decade, frequency of droughts, cyclone, and hailstorms increased, with 2002, 2004, 2009, 2012, and 2014 being severe droughts. Frequent cyclones and severe hailstorms in drought prone areas have become common. Eastern part of the country is affected by seawater intrusion. Reduced food grain productivity, loss to vegetable and fruit crops, fodder scarcity, shortage of drinking water to animals during summer, forced migration of animals, severe loss to poultry and fishery sectors were registered, threatening the livelihoods of rural poor. Enhancing agricultural productivity, therefore, is critical for ensuring food and nutritional security for all, particularly the resource-poor, small, and marginal farmers who would be the most affected. In the absence of planned adaptation, the consequences of long-term climate change on the livelihood security of the poor could be severe. In India, the estimated countrywide agricultural loss in 2030 is expected to be over $ 7 billion that will severely affect the income of at least 10% of the population. However, this could be reduced by 80%, if cost-effective climate resilient measures are implemented. Climate risks are best addressed through increasing adaptive capacity and building resilience which can bring immediate benefits and can also reduce the adverse impacts of climate change. Climate resilient agriculture (CRA) encompasses the incorporation of adaptation and resilient practices in agriculture which increases the capacity of the system to respond to various climate-related disturbances by resisting damage and ensures quick recovery. Such disturbances include events such as drought, flood, heat/cold wave, erratic rainfall pattern, pest outbreaks, and other threats caused by changing climate. Resilience is the ability of the system to bounce back and essentially involves judicious and improved management of natural resources, land, water, soil, and genetic resources through adoption of best bet practices. CRA is a way to achieve short-and long-term agricultural development priorities in the face of climate change and serves as a bridge to other development priorities. It seeks to support countries and other actors in securing the necessary policy, technical and financial conditions to enable them to: (1) sustainably increase agricultural productivity and incomes in order to meet national food security and development goals, (2) build resilience and the capacity of agricultural and food systems to adapt to climate change, and (3) seek opportunities to mitigate emissions of greenhouse gases (GHGs) and increase carbon sequestration. These three conditions (food security, adaptation, and mitigation) are referred to as the 'triple win' of overall CRA. The concept of climate resilient village (CRV) has been taken up by Government of India, to provide stability to farm productivity and household incomes and resilience through livelihood diversification in the face of extreme climatic events like droughts, cyclones, floods, hailstorms, heat wave, frost, and seawater inundation. Development of CRVs warrants establishment of a host of enabling mechanisms to mobilize and empower communities in the decision-making process to manage and recover from climate risks. The overall program of establishing CRVs have structured village level institutions such as Village Climate Risk Management Committee (VCRMC), custom hiring center (CHC) for farm implements, community seed and fodder banks, commodity groups etc. The establishment of CRVs was based on bottom-up approach with village community taking a central role in decision making on institutional requirements, technological interventions and supporting systems with able support from experts. In our knowledge, the CRV network of National Initiative on Climate Resilient Agriculture (NICRA) is by far the largest outreach program involving farmer's participation ever undertaken in the field of climate change adaptation anywhere in the world. Planning, coordination, monitoring, and capacity building of the program at the country level is the responsibility of the research organization (ICAR-Central Research Institute for Dryland Agriculture). At the district level, Krishi Vigyan Kendra (KVK; Farm Science Centre) under the Division of Agricultural Extension under Indian Council of Agricultural Research (ICAR), All India Coordinated Research Project for Dryland Agriculture (AICRPDA) centers and Transfer of Technology divisions of various ICAR Institutions across the country are responsible in implementing the project at village level through farmers' participatory approach. To address the climate vulnerabilities of the selected villages, different interventions were planned under the four modules; however, the specific intervention under each module for a particular village was need based and decided based on climatic vulnerability and resource situation of the particular village. The four intervention modules being implemented are (1) Natural resource management (in situ moisture conservation, biomass mulching, residue recycling, manure management, soil health card-based nutrient application, water harvesting and recycling for supplementary or life saving irrigation, improved drainage in high rainfall/flood prone villages, conservation tillage, and water saving irrigation methods). (2) Crop production module consisting of introduction of short-duration and drought/flood-tolerant varieties, modifications in planting dates for postrainy (winter) season crops to cope with terminal heat stress, water saving paddy systems (System of Rice Intensification, aerobic, direct seeding), frost management in fruit/vegetables, community nursery in staggered dates to meet delay in onset of monsoon, energy-efficient farm machinery through village CHC with timely completion of farm operation in limited sowing window, location specific intercropping systems, and suitable agroforestry systems. (3) Module III covers livestock and fisheries interventions through augmentation of fodder production, fodder storage methods, prophylaxis, and improved shelters for reducing heat stress in livestock, management of fish ponds/tanks during water scarcity and excess water, and promotion of livestock as climate adaptation strategy. (4) Module IV consists of village level institutions, collective marketing groups, introduction of weather-based insurance, and climate literacy though establishment of automated weather stations. Impacts of these climate resilient interventions in the villages were assessed through various resilience indicators, importantly, improved farm productivity, farm income, livelihoods at household and village level. Environmental impacts were assessed on improved soil carbon sequestration, groundwater recharge, vegetation and forest cover, and measurements of GHG emissions which were correlated with ex ante assessment of village level carbon balance and overall contribution to global warming potential. These 151 CRVs are learning sites for further expanding resilient villages to adjoining clusters and districts so that large number of villages will become part of the overall adaptation-led climate change mitigation mission in the country.

Increased rainfall variability reduces biomass and forage quality of temperate grassland largely independent of mowing frequency

Climate models indicate that global warming will stimulate atmospheric exchange processes and increase rainfall variability, leading to longer dry periods and more intense rainfall events. Recent studies suggest that both the magnitude of the rainfall events and their frequency may be as important for temperate grassland productivity as the annual sum. However, until now interactive effects between land management practice, such as mowing frequency, and rainfall variability on productivity and forage quality have not been studied in detail. Here, we present the data from a field experiment (EVENT II) in which a Central-European grassland was subjected to increased spring rainfall variability (low, intermediate and extreme rainfall variability without any change to the rainfall amount) and increased mowing frequency (four times compared to twice a year). We assessed biomass production, forage quality parameters, root-length and shoot-root ratio. Enhanced spring rainfall variability reduced midsummer productivity and the leaf N and protein concentrations of a target species, but did not exert any long-term effects on biomass production and forage quality in late summer. However, the increased spring rainfall variability reduced aboveground net primary productivity by 15%. More frequent mowing increased productivity in the first year of the study, but decreased productivity at the end of the second year, showing a decline in the potential for overcompensation after a history of more intense mowing. Generally, more frequent mowing decreased the shoot-root ratio and increased the concentration of leaf N. Increased mowing frequency neither buffered, nor amplified the adverse effects of rainfall variability on productivity, but made leaf N concentrations in early summer more responsive to altered rainfall patterns. These results highlight the fact that even relatively small and short-term alterations to rainfall distribution can reduce production and forage quality, with little buffering capacity of altered mowing frequency. Comparisons with productivity data from the first year of the study, in which both, rainfall distribution and rainfall amount were modified, demonstrate the crucial role of sufficient moisture (annual rainfall amount) for grassland resilience: in this first year, negative effects of extreme rainfall variability lasted until the end of the year. To conclude, increased rainfall variability under climate change will likely affect agricultural yield in temperate meadows. Management strategies to buffer these effects have yet to be developed.

Soil erosion in the humid tropics: A systematic quantitative review

Healthy soils provide a wide range of ecosystem services. But soil erosion (one component of land degradation) jeopardizes the sustainable delivery of these services worldwide, and particularly in the humid tropics where erosion potential is high due to heavy rainfall. The Millennium Ecosystem Assessment pointed out the role of poor land-use and management choices in increasing land degradation. We hypothesized that land use has a limited influence on soil erosion provided vegetation cover is developed enough or good management practices are implemented. We systematically reviewed the literature to study how soil and vegetation management influence soil erosion control in the humid tropics. More than 3600 measurements of soil loss from 55 references covering 21 countries were compiled. Quantitative analysis of the collected data revealed that soil erosion in the humid tropics is dramatically concentrated in space (over landscape elements of bare soil) and time (e.g. during crop rotation). No land use is erosion-prone per se, but creation of bare soil elements in the landscape through particular land uses and other human activities (e.g. skid trails and logging roads) should be avoided as much as possible. Implementation of sound practices of soil and vegetation management (e.g. contour planting, no-till farming and use of vegetative buffer strips) can reduce erosion by up to 99%. With limited financial and technical means, natural resource managers and policy makers can therefore help decrease soil loss at a large scale by promoting wise management of highly erosion-prone landscape elements and enhancing the use of low-erosion-inducing practices.

How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season?

Extensive cultivation of rubber plantations in Xishuangbanna in southwest (SW) China has resulted in negative hydrological consequences, particularly drought, during the pronounced dry season. Although rubber-tea agroforestry is regarded as the most successful agroforestry system for improving the sustainability of rubber agriculture and environmental conservation, plant water use patterns and their related interactions have rarely been examined in such systems. How do coexisting plants compete and share water under water deficit remains to be explored. Therefore, we used stable isotope (delta D and delta O-18) methods to determine the spatial water use patterns of both rubber trees and tea trees in a rubber-tea agroforestry system during the pronounced dry season and explored the movement of soil water in this system. The results of the MixSIAR model (a Bayesian mixing model) indicated that tea trees primarily uptake water from the 5-30 cm soil layer (40.3%, on average), and rubber trees primarily uptake water from the 30-80 cm soil layer (35.3%, on average) and absorb soil water evenly along slopes during the dry season. These results suggest that rubber trees and tea trees have different but complementary water use patterns. We also observed that the soil of the uphill and downhill tea rows contained much more water; however, the collaborative hydraulic redistribution in the studied agroforestry system could redistribute the soil water along the slope and below the ground well. Therefore, soil drought on terraces can be alleviated during the dry season. Our results confirmed that the tea tree is an appropriate crop for intercropping with rubber trees when considering water sharing and water management and provided a practical analysis of water use benefits from a rubber agroforestry system during drought stress.

Adaptation to climate change in rainfed agriculture in the global South: soil biodiversity as natural insurance

Increased drought frequency in many parts of the world, especially in the global South, is expected due to accelerating climate change. We present a bioeconomic model that unpacks the role of soil biodiversity as contributing to both increasing and stabilizing agricultural productivity in low-input rainfed farming systems. The natural insurance value of soil biodiversity mostly depends on farmers’ risk preferences as well as on the frequency of drought events to be insured against. We show that when the probability of drought increases, soil biodiversity conservation can be an optimal ecosystem-based adaptation strategy. However, this is only likely to be the case up to a given drought probability threshold. The natural insurance value of soil biodiversity for climate change adaptation in drought prone rainfed agricultural systems depends on a combination of key hydrological, agronomic and economic parameters.

Modeling current and future freshwater inflow needs of a subtropical estuary to manage and maintain forested wetland ecological conditions

Riverine input is essential for the sustainability of the estuaries, wetlands, and swamps into which they flow. An existing coastal ecosystem model was used with forested wetland and fish habitat indicators to evaluate current environmental conditions as well as future restoration projects via 50-year simulations of riverine flow with sea level rise and subsidence. The objective of this study was to utilize the Integrated Compartment Model developed for the Louisiana Coastal Protection and Restoration Authority’s 2017 Coastal Master Plan to understand how alternations of riverine flow from existing rivers and future restoration projects may influence the spatial and temporal distribution of wetland habitats and suitability of fish habitats. The model was applied to the Lake Maurepas ecosystem where the Amite River flows into the lake and supports vital fisheries for surrounding communities, as well as a unique and valuable recreational resource. Additionally, the Amite River nourishes the marshes and swamps around Lake Maurepas that are essential for storm surge protection for the broader region. Modeling results suggest that the major contributing factor to the freshwater conditions to the Lake Maurepas area is the challenge of relative sea level rise − the combination of rising seas and subsidence. Fresh forested areas comprised of bald cypress (Taxodium distichum) and tupelo gum (Nyssa aquatica) in Maurepas Swamp decrease significantly under all future climate and relative sea level rise simulations except when future restoration projects are utilized. An estimated ∼1000 km2 of fresh forested wetland could be maintained over a 50-year period when considering certain restoration projects that increase freshwater flow and under climate change-related rainfall patterns, sea level rise and subsidence. However, modeled results indicate that more than 100% of the current riverine flows into the Maurepas Swamp region are still not sufficient to fully counteract the impacts of the assumed future sea level rise scenario and maintain the current forested wetlands surrounding Lake Maurepas. The higher salinities and more estuarine open water areas provide additional habitat in the future that will likely be more suitable for spotted seatrout (Cynoscion nebulosus), and adult bay anchovy (Anchoa mitchilli) than largemouth bass (Micropterus salmoides). Modeled future conditions of this ecosystem can inform restoration agencies and organizations by helping to prioritize and plan for future decades by incorporating critical factors such as sea level rise, subsidence and precipitation patterns, including the possible need to plan and prepare for changes in the fish communities and consider how that might influence the well-being of local communities.

Optimization schemes for grassland ecosystem services under climate change

Ecosystem and associated services in arid and semiarid areas are sensitive to climate change and human activities. Guiding human activities based on the optimization of ecosystem services can help humans adapt to climate change effectively, which is vital for regional sustainability. We evaluated the distribution of five ecosystem services: net primary productivity (NPP), soil conservation (SC), water yield (WY), water retention (WR), and livestock supply in the grassland and agro-pastoral transitional zone of China (GAPTZ) under the future climate scenarios of representative concentration pathway (RCP) 4.5 and RCP8.5 in 2050. We designed the four grazing-intensity scenarios of ungrazed (UG), lightly grazed (LG), moderately grazed (MG), and heavily grazed (HG) and analyzed the impacts of climate change and grazing on the ecosystem services. Finally, we presented the optimization schemes of grazing intensity in the GAPTZ under the objectives of “strong sustainability” and “weak sustainability”. “Strong sustainability” objective means that the total change rate of ecosystem services compared to the ungrazed scenario is maximal and should not be less than 0. “Weak sustainability” objective means that the livestock supply is preferential and the total change rate of ecosystem services compared to the ungrazed scenario is maximal but could be less than 0. The results showed that both climate change and grazing exert great influence on the supply and interrelation of ecosystem services. In the northeast of the GAPTZ, LG and MG can stimulate grassland to tiller and enlarge ecosystem services integrally. HG has the severest negative effect on ecosystem services overall. Under the “weak sustainability” objective, LG can be widely adopted in the GAPTZ. Under the “strong sustainability” objective, grazing should be limited in the northwestern and north-central GAPTZ. Reasonable planning of grazing intensity and its spatial patterns can promote effective utilization of grassland resource and realization of regional sustainability.

Exploring adaptation strategies of coffee production to climate change using a process-based model

The response of coffee (Coffea arabica L.) agronomical performance to changes in climate and atmospheric carbon dioxide concentration ([CO2)) is uncertain. Improving our understanding of potential responses of the coffee plant to these changes while taking into consideration agricultural management is required for identifying best-bet adaptation strategies. A mechanistic crop modelling approach enables the inclusion of a wide range of prior knowledge and an evaluation of assumptions. We adapt a model by connecting it to spatially variable soil and climate data, by which we are able to calculate yield of rain-fed coffee on a daily time-step. The model takes account of variation in microclimate and water use as influenced by shade trees. The approach is exemplified at two East African sites with distinctly different climates (Mt. Elgon, Uganda, and Mt. Kilimanjaro, Tanzania) using a global sensitivity analysis for evaluation of model behavior and prior parameter uncertainty assessment. We use the climate scenario driven by the Hadley Global Environment Model 2-Earth System representative for the year 2050 to discuss potential responses of the coffee plant to interactions of elevated [COO, temperature, and water availability. We subsequently explore the potential for adaptation to this scenario through shade management. The results indicate that under current climatic conditions optimal shade cover at low elevations (1000 m.a.s.l.) is 50%, provided soil water storage capacity is sufficient, enabling a 13.5% increase in coffee yield compared to unshaded systems. Coffee plants are expected to be severely impacted (ranging from 18% to 32% coffee yield reductions) at low elevations by increased temperature ( + 2.5 degrees C) and drought stress when no elevated [CO2] is assumed. Water competition between coffee and shade trees are projected to be a severe limitation in the future, requiring careful selection of appropriate shade tree species or the adoption of other technologies like conservation measures or irrigation. The [CO2]-fertilization effect could potentially mitigate the negative effect of temperature increase and drought stress up to 13-21% depending on site conditions and will increase yield at higher altitudes. High uncertainty remains regarding impacts of climate change on flowering. The presented model allows for estimating the optimal shade level along environmental gradients now and in the future. Overall, it shows that shade proves to be an important adaptation strategy, but this requires improved understanding regarding site-specific management and selection of tree species. Moreover, we do not yet include climate change uncertainty.

Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate

Agroforestry systems, which combine annual crops with trees, are used widely in semi-arid regions to reduce wind erosion and improve resource (e.g. water) use efficiency. Limited knowledge is available on optimizing such systems by the choice of crop species with specific physiological traits (i.e. C3 vs C4, N-fixing vs non-N-fixing). In this study we quantified the light interception and utilization efficiency of trees and crops in agro-forestry systems comprising apricot trees and a C3 species (sweet potato), a C4 species (millet) or an N-fixing legume species (peanut), and used measurements in the sole stands as a reference. A significant delay in leaf growth was found in millet. Maximum LAI of millet was 17% higher in agroforestry then expected from sole crop LAI, taking into account the relative density of 2/3, while a 25% decrease in maximum LAI compared to expected was observed in peanut and sweet potato. The total light interception in agroforestry was 54% higher than in sole tree stands and 23% higher than in sole crops. The millet intercepted more light and produced more biomass in agroforestry than peanut and sweet potato. The LUE values of the crops in the mixed systems were higher than those of the sole crops, as was the photosynthetic efficiency of individual leaves, especially in plants in the border rows of the crop strips. High light capture in agroforestry made a greater contribution to productivity of understory crops than the increases in light use efficiency. We conclude that agroforestry systems with apricot trees and annual crops, especially millet, can improve light utilization in semi-arid climates and contribute to regional sustainability and adaptation to climate change.