The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China’s ‘Water Tower’ owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000–2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000–2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000–2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.
Archives: Publications
Adapting to climate change is among the biggest challenges humanity faces in the next century. An overwhelming focus of adaptation strategies to reduce climate change-related hazards has been on hard-engineering structures such as sea walls, irrigation infrastructure and dams. Closer attention to a broader spectrum of adaptation options is urgently needed. In particular, ecosystem-based adaptation approaches provide flexible, cost-effective and broadly applicable alternatives for buffering the impacts of climate change, while overcoming many drawbacks of hard infrastructure. As such, they are a critical tool at adaptation planners’ disposal for tackling the threats that climate change poses to peoples’ lives and livelihoods.
We developed an indicator that defines priority municipalities in order to facilitate the deployment of preventive policies and strategies for ecosystem-based adaptation to climate change (EbA) in Brazilian municipalities. Based on the premises that poor people are the population most vulnerable to climate change and that conservation and sustainable use of biodiversity and ecosystems are adaptive to climate change, our indicator uses three parameters: (1) poverty, (2) proportion of natural-vegetation cover, and (3) exposure to climate change. Thus, we searched for Brazilian municipalities that simultaneously belonged to the quartile of municipalities with the highest percentage of poverty, the quartile with the highest percentage of natural-vegetation cover, and the quartile with the highest exposure indices in two global climate models (Eta-HadGEM, Eta-Miroc). We found 398 (7.1%) EbA hotspots among 5565 Brazilian municipalities, which comprise 36% of the total area of native remnants in the country and are home to 22% of the poor people in Brazil. In their majority, these municipalities cover significant portions of the Amazon, Cerrado, Caatinga, and Atlantic forest, and indeed, these regions are recognised as some of the most vulnerable to climate change in the world. Considering the relevance of these biomes for the global water and nutrient cycle (Amazon), global food security (Cerrado), vulnerability to desertification (Caatinga), and biodiversity (all) we discuss the adaptive strategies in place, the need to bring them to scale, and existing policy gaps. Finally, in an effort to guide international and national investment and policies, we discuss how the approach described here can be applied to societies inhabiting tropical forests, savannas, and semiarid zones in other parts of the world. In particular, we propose that the indicator developed here is a simple and fast way to achieve early detection of priority municipalities for deployment of EbA action and policies, particularly in tropical developing countries.
The rehabilitation and restoration of land is a key strategy to recover services -goods and resources- ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature-based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management, NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of nature-based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local ecosystem services will be maintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soil moisture and reducing droughts and soil erosion we can achieve the sustainability. The enhanced ecosystem services directly feed into the realization of the Sustainable Development Goals of the United Nations.
Our assessment highlights certain governance mechanisms and policy processes that could contribute to joint adaptation and economic planning and in achieving multiple objectives. These include leadership, institutional mechanisms, science–policy nexus, decision-making structures, stakeholder involvement, and technological innovation. These readiness factors as well as knowledge gaps on future risks provide lessons for other SIDS in their climate change and integrated coastal management initiatives.
The Elephant Marsh, a wetland in Southern Malawi, is important for fishing, agriculture, hunting and the collection of natural resources for the livelihoods of local communities. However, there has been increasing pressure driven by a changing climate, population growth, rural poverty and agricultural conversion, all of which threaten the future of the wetland. Currently, Malawi does not have either a national wetland policy or a climate change policy and wetland issues are only marginally present in the National Parks and Wildlife Policy of 2000 and National Fisheries and Aquaculture Policy of 2001. As a result, the country lacks a framework that could be strong enough to achieve balanced and sustainable wetland management for multiple resource users. The objective of this study was to establish the development potentials of Elephant Marsh from an ecosystem-based (‘working-with-nature’) perspective. It was revealed that there are development potentials in fisheries, recession agriculture, biomass for energy, conservation and tourism. This paper emphasizes that as these opportunities are developed, there will be the need to strengthen management institutions at local and national levels, and the coordination between the two.
This study proposes a novel approach for establishing adaptive environmental-flow prescriptions for rivers, channels, and floodways with substantial flow augmentation and a limited decision space using the highly altered Atchafalaya River Basin (ARB) in Louisiana as an example. Development of the ARB into the primary floodway of the Mississippi River and Tributaries Project has contributed to hydrologic changes basin-wide that have altered the river-floodplain interface threatening important ecosystems, notably the expansive baldcypress-water tupelo swamp forests. Current restoration efforts only address the spatial distribution of water in local areas of the basin; however, the timing, frequency, magnitude, and duration of ecologically-important high and low flows are determined at the basin-wide scale by the daily implementation of a federal flow mandate that limits available water management options. We used current hydrologic conditions and established flow-ecology relationships from the literature to develop an environmental flow prescription for the ARB that provides basin-wide flow targets to complement ongoing restoration efforts. Hydrologic analysis of current flows and the flow-ecology requirements for these wetland forests revealed an overlap in the range of flow variability under the current water management model, suggesting environmental flows can be complementary with the desired hydraulic and geomorphic characteristics of the floodway. The result is a first step towards an adaptive flow regime that strives to balance important flow-ecology relationships within a decision space limited by a federal flow mandate. We found high potential for success in managing water for nature while accommodating other management needs for the river.
Watershed protection is one of the many goods and services provided by the world’s fast disappearing tropical forests. Among the variety of watershed protection benefits, flood damage alleviation is crucial, particularly in upland watersheds. This study is a rare attempt to estimate flooding alleviation benefits, resulting from the protection of upland forests in Eastern Madagascar. A three stage model is used to examine the relationship between the economic concept of value and the bio-physical dimensions of the protected area. This approach combines techniques from remote sensing, soil and hydrologic sciences and economics. In stage one, the relationship between changes in land use practices and the extent of flooding in immediate downstream is established by using remotely sensed and hydrologic-runoff data. Stage two relates the impact of increased flooding to crop production by comparing the hydrologic data with the agronomic flood damage reports for the same time period. In stage three, a productivity analysis approach is adopted to evaluate flood damage in terms of lost producer surplus. The presence of the Mantadia National Park, in eastern Madagascar, is designed to prevent land conversions and changes in hydrologic patterns, thereby alleviating flood damage. This averted flood damage is a measure of the watershed protection benefits to society. Given that natural systems are subject to considerable stochastic shocks, sensitivity analysis is used to examine the uncertainty associated with the key random variables. The results of this analysis should help policy makers assess trade-offs between the costs and benefits of protecting tropical rainforest.
The increase in atmospheric concentration of CO2 by 31% since 1750 from fossil fuel combustion and land use change necessitates identification of strategies for mitigating the threat of the attendant global warming. Since the industrial revolution, global emissions of carbon (C) are estimated at 270 F 30 Pg (Pg = petagram = 1015 g = 1 billion ton) due to fossil fuel combustion and 136 F 55 Pg due to land use change and soil cultivation. Emissions due to land use change include those by deforestation, biomass burning, conversion of natural to agricultural ecosystems, drainage of wetlands and soil cultivation. Depletion of soil organic C (SOC) pool have contributed 78 F 12 Pg of C to the atmosphere. Some cultivated soils have lost one-half to two-thirds of the original SOC pool with a cumulative loss of 30 – 40 Mg C/ha (Mg = megagram = 106 g = 1 ton). The depletion of soil C is accentuated by soil degradation and exacerbated by land misuse and soil mismanagement. Thus, adoption of a restorative land use and recommended management practices (RMPs) on agricultural soils can reduce the rate of enrichment of atmospheric CO2 while having positive impacts on food security, agro-industries, water quality and the environment. A considerable part of the depleted SOC pool can be restored through conversion of marginal lands into restorative land uses, adoption of conservation tillage with cover crops and crop residue mulch, nutrient cycling including the use of compost and manure, and other systems of sustainable management of soil and water resources. Measured rates of soil C sequestration through adoption of RMPs range from 50 to 1000 kg/ha/year. The global potential of SOC sequestration through these practices is 0.9 F 0.3 Pg C/year, which may offset one-fourth to one-third of the annual increase in atmospheric CO2 estimated at 3.3 Pg C/year. The cumulative potential of soil C sequestration over 25 – 50 years is 30 – 60 Pg. The soil C sequestration is a truly win –win strategy. It restores degraded soils, enhances biomass production, purifies surface and ground waters, and reduces the rate of enrichment of atmospheric CO2 by offsetting emissions due to fossil fuel.
Sea-level rise, potential changes in the intensity and frequency of storms, and consequent shoreline erosion and flooding will have increasing impacts on the economy and culture of coastal regions. A growing body of evidence suggests that coastal ecosystems—natural infrastructure—can play an important role in reducing the vulnerability of people and property to these impacts. To effectively inform climate adaptation planning, experts often struggle to develop relevant local and regional information at a scale that is appropriate for decision-making. In addition, institutional capacity and resource constraints often limit planners’ ability to incorporate innovative, scientifically based approaches into planning. In this paper, we detail our collaborative process in two coastal California counties to account for the role of natural infrastructure in climate adaptation planning. We used an interdisciplinary team of scientists, economists, engineers, and law and policy experts and planners, and an iterative engagement process to (1) identify natural infrastructure that is geographically relevant to local jurisdictional planning units, (2) refine data and models to reflect regional processes, and (3) develop metrics likely to resonate within the local decision contexts. Using an open source decision-support tool, we demonstrated that protecting existing natural infrastructure—including coastal dunes and wetlands—could reduce the vulnerability of water resource-related structures, coastal populations, and farmland most exposed to coastal flooding and erosion. This information formed part of the rationale for priority climate adaptation projects the county governments are now pursuing. Our collaborative and iterative approach, as well as replicable use of an open source decision-support tool, facilitated inclusion of relevant natural infrastructure information into regional climate adaptation planning processes and products. This approach can be applied in diverse coastal climate adaptation planning contexts to locate and characterize the degree to which specific natural habitats can reduce vulnerability to sea-level rise and storms.
Smallholder farmers are vulnerable to environmental, climate and weather-related stress, including climate change. There is an increase in understanding of the benefits of agroforestry systems both at farm and landscape scales, and that incorporating trees on farms through agroforestry systems has emerged as having the potential to enhance the resilience of smallholders to current and future climate risks including future climate change. Drawing on global examples with a focus on African case studies, this paper demonstrates the versatile roles of trees and agroforestry in reducing smallholder’s exposure to climate-related risks. It goes on to identify challenges in the promotion and adoption of agroforestry at the farm and landscape levels as a climate change adaptation strategy. The paper highlights areas for further research, policy and dissemination efforts, and identifies entry points for agroforestry adoption.
Recent studies have highlighted the importance of trees and agroforestry in climate change adaptation and mitigation. This paper analyzes how farmers, members of their households, and community leaders in the Wahig–Inabanga watershed, Bohol province in the Philippines perceive of climate change, and define and value the roles of trees in coping with climate risks. Focus group discussions revealed that farmers and community leaders had observed changes in rainfall and temperature over the years. They also had positive perceptions of tree roles in coping with climate change, with most timber tree species valued for regulating functions, while non-timber trees were valued as sources of food and income. Statistical analysis of the household survey results was done through linear probability models for both determinants of farmers’ perceived changes in climate, and perceived importance of tree roles in coping with climate risks. Perceiving of changes in rainfall was more likely among farmers who had access to electricity, had access to water for irrigation, and derived climate information from government agencies and mass media, and less likely among farmers who were members of farmers’ organizations. On the other hand, perceiving of an increase in temperature was more likely among famers who were members of women’s organizations and had more off/non-farm sources of income, and less likely among those who derived climate information from government agencies. Meanwhile, marginal effects of the regression on perceived importance of trees in coping with climate change revealed positively significant relationships with the following predictor variables: access to electricity, number of off/non-farm sources of income, having trees planted by household members, observed increase in temperature and decline in yield, and sourcing climate information from government agencies. In contrast, a negatively significant relationship was observed between recognition of the importance of tree roles, and level of education, and deriving income from tree products. In promoting tree-based adaptation, we recommend improving access to necessary inputs and resources, exploring the potentials of farmer-to-farmer extension, using participatory approaches to generate farmer-led solutions based on their experiences of climate change, and initiating government-led extension to farmers backed by non-government partners.
Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, ‘climate adaptation services’, are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning.
Marine ecosystems provide essential services to humans, yet these services have been diminished, and their future sustainability endangered, by human patterns of exploitation that threaten system robustness and resilience. Marine ecosystems are complex adaptive systems composed of individual agents that interact with one another to produce collective effects, integrating scales from individual behaviors to the dynamics of whole systems. In such systems, small changes can be magnified through nonlinear interactions, facilitating regime shifts and collapses. Protection of the services these ecosystems provide must therefore maintain the adaptive capacities of these systems by preserving a balance among heterogeneity, modularity, and redundancy, tightening feedback loops to provide incentives for sound stewardship. The challenge for management is to increase incentives to individuals, and tighten reward loops, in ways that will strengthen the robustness and resilience of these systems and preserve their ability to provide ecosystem services for generations to come.
To better understand the driving forces of changes in streamflow (Q), this study analyzed the changes in the hydro-meteorological series by the Mann-Kendall, Pettitt’s test and the flow duration curve (FDC) in the Wuding River Basin (WRB), which is a typical river basin in the Loess Plateau. The response of Q variability to climate change and human activities were also quantified by the elasticity method and decomposition method based on the Budyko framework. The results showed that Q exhibited an obvious downward trend at the rate of 0.44 mm/1 with a changing point occurred in 1980. Compared with 1961–1980, the greatest reduction in monthly Q during 1981–2007 was found in April (41 %) and the low flows have more distinct decrease than high flows. The precipitation (P), potential evapotranspiration (E0) and catchment characteristics parameter n elasticity of Q are 2.40, −1.40 and −2.51, respectively, indicating that Q variability is most sensitive to human activities. The contribution of climate change and human activities to changes in Q from the two methods are 35 and 65 %, respectively. The ecological restoration (ER) measures, including channel measures and slope measures, were found to be the dominant factors responsible for the decreased Q. Furthermore, changes in Q in 1970–1990 could be mainly ascribed to channel measures while slope measures have played more important roles after 1999 when the Grain-for-Green (GFG) project was implemented. This study could provide scientific basis for how to mitigate effectively and efficiently changes in water resources and guide measures to be implemented in the region under the future climate change.
Recognition that climate change could have negative consequences for agricultural production has generated a desire to build resilience into agricultural systems. One rational and cost-effective method may be the implementation of increased agricultural crop diversification. Crop diversification can improve resilience in a variety of ways: by engendering a greater ability to suppress pest outbreaks and dampen pathogen transmission, which may worsen under future climate scenarios, as well as by buffering crop production from the effects of greater climate variability and extreme events. Such benefits point toward the obvious value of adopting crop diversification to improve resilience, yet adoption has been slow. Economic incentives encouraging production of a select few crops, the push for biotechnology strategies, and the belief that monocultures are more productive than diversified systems have been hindrances in promoting this strategy. However, crop diversification can be implemented in a variety of forms and at a variety of scales, allowing farmers to choose a strategy that both increases resilience and provides economic benefits.
In this study we assess multiple benefits (environmental, social and economic) provided by a multi-purpose green infrastructure (a series of constructed wetlands surrounded by a park) in a peri-urban area, and compare it with the alternative grey infrastructure and with the previous situation (a poplar plantation). We apply a multi-criteria analysis as a basis for integrated valuation. We address specific policy needs (strategic objectives) for the local territorial planning in the implementation of the EU Water Framework Directive. The analysis is used retrospectively (ex post evaluation) but our results could also be used prospectively to appraise new proposals of constructed wetlands under similar circumstances. The results reflect that the green infrastructure performs equal or even better than the grey infrastructure alternative for water purification and flood protection, it has a similar cost, and it provides additional benefits (like wildlife support and recreation). The most preferred alternative is the green infrastructure, followed by the grey infrastructure and the poplar plantation. This study demonstrates (a) the effectiveness of investments on nature-based solutions, (b) the potential of green infrastructures for delivering a broad range of ecosystem services, and (c) the utility of integrating different value systems and stakeholders’ viewpoints to support environmental decision-making.
Inland flood risks are defined by a range of environmental and social factors, including land use and floodplain management. Shifting patterns of storm intensity and precipitation, attributed to climate change, are exacerbating flood risk in regions across North America. Strategies for adapting to growing flood risks and climate change must account for a community’s specific vulnerabilities, and its local economic, environmental, and social conditions. Through a stakeholder-engaged methodology, we designed an interactive decision exercise to enable stakeholders to evaluate alternatives for addressing specific community flood vulnerabilities. We used a multicriteria framework to understand what drives stakeholder preferences for flood mitigation and adaptation alternatives, including ecosystem-based projects. Results indicated strong preferences for some ecosystem-based projects that utilize natural capital, generated a useful discussion on the role of individual values in driving decisions and a critique of local environmental and hazard planning procedure, and uncovered support for a river management alternative that had previously been considered socially infeasible. We conclude that a multicriteria decision framework may help ensure that the multiple benefit qualities of natural capital projects are considered by decision makers. Application of a utility function can demonstrate the role of individual decision-maker values in decision outcomes and help illustrate why one alternative may be a better choice than another. Although designing an efficient and accurate multicriteria exercise is quite challenging and often data intensive, we imagine that this method is applicable elsewhere. It may be especially suitable to group decisions that involve varying levels of expertise and competing values, as is often the case in planning for the ecological and human impacts of climate change.
Responses to climate change must now focus on reducing greenhouse gas emissions enough to avoid runaway impacts (avoiding the unmanageable) and on addressing the impacts that are already with us (managing the unavoidable). Managing natural ecosystems as carbon sinks and resources for adaptation is increasingly recognised as a necessary, efficient and relatively cost-effective strategy. The Stern Review on the Economics of Climate Change recommended that governments develop policies for climate sensitive public goods including natural resource protection, coastal protection and emergency preparedness. The worlds protected area network already helps mitigate and adapt to climate change. Protected areas store 15 per cent of terrestrial carbon and supply ecosystem services for disaster reduction, water supply, food and public health, all of which enable community-based adaptation. Many natural and managed ecosystems can help reduce climate change impacts. But protected areas have advantages over other approaches to natural ecosystem management in terms of legal and governance clarity, capacity and effectiveness. In many cases protection is the only way of keeping carbon locked in and ecosystem services running smoothly. Without the investment made in protected areas systems worldwide, the situation would be even worse. Increasing investment through a partnership of governments, communities, indigenous peoples, non-governmental organisations and the private sector would ensure greater protection of these essential services. Evidence suggests that protected areas work: even since this report was completed, a new World Bank review shows how tropical protected areas, especially those conserved by indigenous peoples, lose less forest than other management systems. But these co-benefits for climate, biodiversity and society are often missed or ignored. This book clearly articulates for the first time how protected areas contribute significantly to reducing impacts of climate change and what is needed for them to achieve even more. As we enter an unprecedented scale of negotiations about climate and biodiversity it is important that these messages reach policy makers loud and clear and are translated into effective policies and funding mechanisms.
Pursuing economic targets of job creation, growth, and innovation while tackling global environmental challenges, has long been seen as impossible. However, any long-term economic competitiveness and security depends on the extent to which natural resources are used sustainably. Therefore, the European Union is investing in nature-based solutions to achieve this double goal. The difference between the prevailing economic model and a sustainable resource use has long seemed insurmountable. While many debates are paralyzed or radicalized, nature-based solutions could offer a transition path with realistic, incremental steps toward a sustainable economy as envisaged by the EU Horizon 2020 vision. This paper outlines the basics of a nature-based scenario for Europe, and proposes criteria to focus, guide, and evaluate the implementation of nature-based solutions, geared at production of wide socioeconomic benefits, provision of jobs, and low-carbon technology innovations.
Decision making for the conservation and management of coral reef biodiversity requires an understanding of spatial variability and distribution of reef habitat types. Despite the existence of very high-resolution remote sensing technology for nearly two decades, comprehensive assessment of coral reef habitats at national to regional spatial scales and at very high spatial resolution is still scarce. Here, we develop benthic habitat maps at a sub-national scale by analyzing large multispectral QuickBird imagery dataset covering ~686 km2 of the main shallow coral fringing reef along the southern border with Tanzania (4.68°S, 39.18°E) to the reef end at Malindi, Kenya (3.2°S, 40.1°E). Mapping was conducted with a user approach constrained by ground-truth data, with detailed transect lines from the shore to the fore reef. First, maps were used to evaluate the present management system’s effectiveness at representing habitat diversity. Then, we developed three spatial prioritization scenarios based on differing objectives: (i) minimize lost fishing opportunity; (ii) redistribute fisheries away from currently overfished reefs; and (iii) minimize resource use conflicts. We further constrained the priority area in each prioritization selection scenario based on optionally protecting the least or the most climate exposed locations using a model of exposure to climate stress. We discovered that spatial priorities were very different based on the different objectives and on whether the aim was to protect the least or most climate-exposed habitats. Our analyses provide a spatially explicit foundation for large-scale conservation and management strategies that can account for ecosystem service benefits.
Ecosystem-based approaches (EBAs) to managing anthropogenic pressures on ecosystems, adapting to changes in ecosystem states (indicators of ecosystem health), and mitigating the impacts of state changes on ecosystem services are needed for sustainable development. EBAs are informed by integrated ecosystem assessments (IEAs) that must be compiled and updated frequently for EBAs to be effective. Frequently updated IEAs depend on the sustained provision of data and information on pressures, state changes, and impacts of state changes on services. Nowhere is this truer than in the coastal zone, where people and ecosystem services are concentrated and where anthropogenic pressures converge. This study identifies the essential indicator variables required for the sustained provision of frequently updated IEAs, and offers an approach to establishing a global network of coastal observations within the framework of the Global Ocean Observing System. The need for and challenges of capacity-building are highlighted, and examples are given of current programmes that could contribute to the implementation of a coastal ocean observing system of systems on a global scale. This illustrates the need for new approaches to ocean governance that can achieve coordinated integration of existing programmes and technologies as a first step towards this goal.
For centuries, UK peatlands have been subject to competing sectoral land use and resource demands, generally resulting in their progressive degradation. There is now considerable interest in improving their management, especially in the uplands, partly because of their extreme sensitivity to environmental change and partly because of increasing recognition of the range of ecosystem services they provide. A change in emphasis in the research agenda has been detected, shifting from what peat ecosystems are to what they do. This is linked to a paradigm shift in the attitude of governments and, more generally, in civil society, to account for the wider values of ecosystem functioning. The ecosystem approach is used here as a framework to present more integrated thinking about future peatland management. Key questions, identified for societal consideration and debate, are matched to the 12 principles of the ecosystem approach sensu the Convention on Biological Diversity. A case is made for a more functional approach to defining management objectives based on delivery of ecosystem services. A compatibility matrix is used to indicate the possibilities of simultaneous delivery of services and likely incompatibilities among services. A critique is presented of features of UK upland peat ecosystems which characterise their ecological ‘status’ and societal context in relation to climate-change issues. The relative importance of climate as opposed to human activities in both peat formation and subsequent development remains a tantalising question, the resolution of which is highly relevant to the maintenance of existing peat and possibilities for ecosystem restoration, given changes in the climate envelope. Setting policy priorities requires a strong interdisciplinary evidence base. It also demands greater understanding of the effects of both direct and indirect human activities, as well as climate change, on the ability of upland peat ecosystems to deliver societal benefits, which previously may have been undetected, undervalued or simply taken for granted.
1. Facilitating adaptive responses of organisms in modified landscape will be essential to overcome the negative effects of climate change and its interaction with land use change. Without such action, many organisms will be prevented from achieving the predicted range shifts they need to survive. 2. Scattered trees are a prominent feature of many modified landscapes, and could play an important role in facilitating climate change adaptation. They are keystone structures because of the disproportionally large ecological values and ecosystem services that they provide relative to the area they occupy in these landscapes. The provision of habitat and connectivity will be particularly relevant. 3. Scattered trees are declining in modified landscapes due to elevated tree mortality and poor recruitment often associated with intensive land use. The continuing global decline of scattered trees will undermine the capacity of many organisms to adapt to climate change. 4. Synthesis and applications. The sustainable management of scattered trees in modified landscapes could complement other strategies for facilitating climate change adaptation. They create continuous, though sparse, vegetation cover that permits multi-directional movements of biota across landscapes and ecological networks. They have the capacity to span ecosystems and climatic gradients that cannot be captured in formal reserves alone. The management of scattered trees should be an integral part of conservation objectives and agricultural activities in modified landscapes. Public investment, through mechanisms such as agri-environmental schemes, in rotational grazing, temporary set-asides, tree-planting and regulations that reduce clearing and early mortality among standing trees will improve the capacity of biota to adapt to climate change.
Climate change is affecting people and nature across every continent and ocean. Changes in rainfall, snow and ice melt are impacting water resources in terms of quality and quantity. Drought, crop failure and poor yield, and human heat-related stress and mortality are increasing in frequency. Sea-level rise is displacing coastal and island communities through storm surges and saltwater incursion, and deglaciation and range shifts of species on land and sea are leading to loss of ecosystems and creation of new and different ecological communities. In response, many local communities around the world are rapidly adjusting their livelihood practices to cope with climate change, sometimes with catastrophic implications for nature. Humans and nature form a coupled system and understanding the feedback between the way we as humans adapt to climate change under different policy agendas and its impact on nature is crucial to successful adaptation. Environmental outcomes and climate outcomes are inextricably linked. It is time to set a policy agenda that actively rewards those countries, industries and entrepreneurs who develop ecosystem-sensitive adaptation strategies.