Land tenure drives Brazil’s deforestation rates across socio-environmental contexts

Many tropical forestlands are experiencing changes in land-tenure regimes, but how these changes may affect deforestation rates remains ambiguous. Here, we use Brazil’s land-tenure and deforestation data and quasi-experimental methods to analyze how six land-tenure regimes (undesignated/untitled, private, strictly-protected and sustainable-use protected areas, indigenous, and quilombola lands) affect deforestation across 49 spatiotemporal scales. We find that undesignated/untitled public regimes with poorly defined tenure rights increase deforestation relative to any alternative regime in most contexts. The privatization of these undesignated/untitled lands often reduces this deforestation, particularly when private regimes are subject to strict environmental regulations such as the Forest Code in Amazonia. However, private regimes decrease deforestation less effectively and less reliably than alternative well-defined regimes, and directly privatizing either conservation regimes or indigenous lands would most likely increase deforestation. This study informs the ongoing political debate around land privatization/protection in tropical landscapes and can be used to envisage policy aligned with sustainable development goals.

A PES scheme promoting forest biodiversity and carbon sequestration

Forests can play a significant role both in halting biodiversity loss and in mitigating climate change. A variety of payments for ecosystem services (PES) schemes exists to promote biodiversity conservation in forests. These schemes could be used to strengthen the role of forests as carbon sinks as well. This paper analyzes the implications of supplementing a PES scheme that targets boreal forest biodiversity with a carbon index. We use a site selection framework to examine how the proposed scheme impacts the promotion of both targets. We compare a case where the selection is done solely based on biodiversity values to a case where the selection is done based on both biodiversity and carbon benefits. The carbon index is formulated as current carbon storage or as future carbon sink. Correspondingly, biodiversity is maximized based on either current ecological values or potential ones. We compare equal or differing weights for biodiversity and carbon indexes, and examine trade-offs between biodiversity and CO2 in current and future values. Combined index values increase with the carbon index, but there is a trade-off between biodiversity and CO2 values if the conservation budget is not increased when the carbon index is introduced. There is a temporal trade-off in biodiversity and carbon values between selecting sites based on current or future values. Younger stands are preferred at the expense of old-growth stands with the carbon index. Weights can be used to balance the trade-off between biodiversity and carbon benefits. Overall, risks to losing significant ecological value from the conservation network are negligible, but the limited number of sites decreases the generalizability of the results.

Natural climate solutions for Canada

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

Biodiversity needs every tool in the box: use OECMs

To conserve global biodiversity, countries must forge equitable alliances that support sustainability in traditional pastoral lands, fisheries-management areas, Indigenous territories and more.

Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change

Global commitments to protected area expansion should prioritize opportunities to protect climate refugia and ecosystems which store high levels of irrecoverable carbon, as key components of an effective response to biodiversity loss and climate change. The United States and Canada are responsible for one-sixth of global greenhouse gas emissions but hold extensive natural ecosystems that store globally significant above- and below-ground carbon. Canada has initiated a process of protected area network expansion in concert with efforts at reconciliation with Indigenous Peoples, and acknowledged nature-based solutions as a key aspect of climate change mitigation. The US, although not a party to global biodiversity conventions, has recently committed to protecting 30% of its extent by 2030 and achieving the UNFCCC Paris Agreement’s mitigation targets. The opportunities afforded by these dual biodiversity conservation and climate commitments require coordinated national and regional policies to ensure that new protected areas maximize biodiversity-focused adaptation and nature-based mitigation opportunities. We address how global commitments can best inform national policy initiatives which build on existing agency mandates for regional planning and species conservation. Previous analyses of global conservation priorities under climate change have been tenuously linked to policy contexts of individual nations and have lacked information on refugia due to limitations of globally available datasets. Comparison and synthesis of predictions from a range of recently developed refugia metrics allow such data to inform planning despite substantial uncertainty arising from contrasting model assumptions and inputs. A case study for endangered species planning for old-forest-associated species in the US Pacific Northwest demonstrates how regional planning can be nested hierarchically within national biodiversity-focused adaptation and nature-based mitigation strategies which integrate refugia, connectivity, and ecosystem carbon metrics to holistically evaluate the role of different land designations and where carbon mitigation and protection of biodiversity’s resilience to climate change can be aligned.

Protecting wetlands for people: Strategic policy action can help wetlands mitigate risks and enhance resilience

We elevate the undervalued role of wetland protective services for mitigating disastrous consequences of unprecedented weather-related events for human communities. Scientific evidence increasingly reveals that wetlands play critical hydrologic roles in landscapes, helping to mitigate flood, drought, and, in some cases, fire risks. However, wetland protective services have not received sufficient policy action. We propose national wetland commissions, modeled after the concept of lake and river commissions, as one way to strategically link wetland protection to other societal objectives, including human disaster risk planning, infrastructure investments, and climate adaptation strategies. We offer an example applicable to the United States, describing an institutional design for a National Interagency Wetland Commission. We suggest it could be patterned after existing federal commissions statutorily created by Congress with delegated administrative and regulatory authority and designated independent agency status within the executive branch. It is time for bold and innovative policy action to incorporate wetland protective services into societies’ defenses against extreme weather events.

National mitigation potential from natural climate solutions in the tropics

Better land stewardship is needed to achieve the Paris Agreement’s temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement’s goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)—protection, improved management and restoration of ecosystems—to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr−1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.

Strategically designed marine reserve networks are robust to climate change driven shifts in population connectivity

Marine reserves can be effective conservation and fishery management tools, particularly when their design accounts for spatial population connectivity. Yet climate change is expected to significantly alter larval connectivity of many marine species, questioning whether marine reserves designed today will still be effective in the future. Here we predict how alternative marine reserve designs will affect fishery yields. We apply a range of empirically-grounded scenarios for future larval dispersal to fishery models of seven species currently managed through marine reserves in the nearshore waters in Southern California, USA. We show that networks of reserves optimized for future climate conditions differ substantially from networks designed for today’s conditions. However, the benefits of redesign are modest: a set of reserves designed for current conditions commonly produces outcomes within 10 percent of the best redesigned network, and far outperforms haphazardly designed networks. Thus, investing in the strategic design of marine reserves networks today may pay dividends even if the networks are not modified to keep up with environmental change.

Peatlands and Global Change: Response and Resilience

Peatlands are wetland ecosystems that accumulate dead organic matter (i.e., peat) when plant litter production outpaces peat decay, usually under conditions of frequent or continuous waterlogging. Collectively, global peatlands store vast amounts of carbon (C), equaling if not exceeding the amount of C in the Earth’s vegetation; they also encompass a remarkable diversity of forms, from the frozen palsa mires of the northern subarctic to the lush swamp forests of the tropics, each with their own characteristic range of fauna and flora. In this review we explain what peatlands are, how they form, and the contribution that peatland science can make to our understanding of global change. We explore the variety in formation, shape, vegetation type, and chemistry of peatlands across the globe and stress the fundamental features that are common to all peat-forming ecosystems. We consider the impacts that past, present, and future environmental changes, including anthropogenic disturbances, have had and will have on peatland systems, particularly in terms of their important roles in C storage and the provision of ecosystem services. The most widespread uses of peatlands today are for forestry and agriculture, both of which require drainage that results in globally significant emissions of carbon dioxide (CO2), a greenhouse gas (GHG). Climatic drying and drainage also increase the risk of peat fires, which are a further source of GHG emissions [CO2 and methane (CH4)] to the atmosphere, as well as causing negative human health and socioeconomic impacts. We conclude our review by explaining the roles that paleoecological, experimental, and modeling studies can play in allowing us to build a more secure understanding of how peatlands function, how they will respond to future climate- and land-management-related disturbances, and how best we can improve their resilience in a changing world.

Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes

Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples’ lands, we examined the importance of these areas for conserving the world’s remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples’ lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples’ lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples’ rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision‐making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.

Research priorities for natural ecosystems in a changing global climate

Climate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder‐relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.

Integrating climate adaptation and biodiversity conservation in the global ocean

The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.

Key knowledge gaps to achieve global sustainability goals

Regional and global assessments periodically update what we know, and highlight what remains to be known, about the link- ages between people and nature that both define and depend upon the state of the environment. To guide research that better informs policy and practice, we systematically synthesize knowledge gaps from recent assessments of four regions of the globe and three key themes by the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services. We assess their relevance to global sustainability goals and trace their evolution relative to those identified in the Millennium Ecosystem Assessment. We found that global sustainability goals cannot be achieved without improved knowledge on feedbacks between social and ecological systems, effectiveness of governance systems and the influence of institutions on the social distribution of ecosystem services. These top research priorities have persisted for the 14 years since the Millennium Ecosystem Assessment. Our analysis also reveals limited understanding of the role of indigenous and local knowledge in sustaining nature’s benefits to people. Our findings contribute to a policy-relevant and solution-oriented agenda for global, long-term social-ecological research.

A Global Deal For Nature: Guiding principles, milestones, and targets

The Global Deal for Nature (GDN) is a time-bound, science-driven plan to save the diversity and abundance of life on Earth. Pairing the GDN and the Paris Climate Agreement would avoid catastrophic climate change, conserve species, and secure essential ecosystem services. New findings give urgency to this union: Less than half of the terrestrial realm is intact, yet conserving all native ecosystems—coupled with energy transition measures—will be required to remain below a 1.5°C rise in average global temperature. The GDN targets 30% of Earth to be formally protected and an additional 20% designated as climate stabilization areas, by 2030, to stay below 1.5°C. We highlight the 67% of terrestrial ecoregions that can meet 30% protection, thereby reducing extinction threats and carbon emissions from natural reservoirs. Freshwater and marine targets included here extend the GDN to all realms and provide a pathway to ensuring a more livable biosphere.

Utilising nature-based solutions to increase resilience in Pacific Ocean Cities

‘Ocean Cities’ of the Pacific are where urban landscapes and seascapes meet, where built and natural environments interface, and where human behaviour and urban development have profound impacts on both terrestrial and marine ecosystems. Ocean Cities are at the forefront of climate change consequences, urbanisation challenges, and other development pressures. This article discusses the potential for nature-based solutions (NbS), including those focused on ecosystem services, in Pacific Small Island Developing States (SIDS) as a response to climate change, population growth, and urbanisation. Attention is directed to identifying the benefits of NbS and case-studies from Pacific SIDS, and if not available regionally, further afield. The article provides focus on possible barriers to implementation of NbS in a Pacific SIDS context and potential policy responses to these. Conclusions are threefold: (i) addressing interlinked ecological, climate, and human wellbeing issues in an integrated, ocean-focused and climate-responsive manner is vital for sustainable development in island systems; (ii) NbS can provide significant human wellbeing and biodiversity benefits in this context; and (iii) Pacific Ocean Cities, with a significant body of relevant traditional knowledge and emerging NbS experience, can inform global understanding of how to address converging urbanisation and climate change issues in Ocean Cities.

Social–environmental drivers inform strategic management of coral reefs in the Anthropocene

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.

Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration

We currently face both an extinction and a biome crisis embedded in a changing climate. Many biodiverse ecosystems are being lost at far higher rates than they are being protected or ecologically restored. At the same time, natural climate solutions offer opportunities to restore biodiversity while mitigating climate change. The Bonn Challenge is a U.N. programme to restore biodiversity and mitigate climate change through restoration of the world’s degraded landscapes. It provides an unprecedented chance for ecological restoration to become a linchpin tool for addressing many environmental issues. Unfortunately, the Forest and Landscape Restoration programme that underpins the Bonn Challenge, as its name suggests, remains focused on trees and forests, despite rising evidence that many non-forest ecosystems also offer strong restoration potential for biodiversity and climate mitigation. We see a need for restoration to step back to be more inclusive of different ecosystem types and to step up to provide integrated scienti c knowledge to inform large-scale restoration. Stepping back and up will require assessments of where to restore what species, with recognition that in many landscapes multiple habitat types should be restored. In the process, trade-offs in the delivery of different ecosystem services (e.g. carbon, biodiversity, water, albedo, livestock forage) should be clearly addressed. We recommend that biodiversity safeguards be included in policy and implemented in practice, to avoid undermining the biophysical relationships that provide ecosystem resilience to climate change. For ecological restoration to contribute to international policy goals will require integrated large-scale science that works across biome boundaries.

Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure

The concept and establishment of Ecological Networks (EN) have been seen as a solution towards nature conservation strategies targeting biodiversity and ecological connectivity. Within this, the EN assumed a holistic view of land-use planning and biodiversity conservation as the core of the wider Green Infrastructure (GI) framework. The EN is considered a spatial concept recognized as a system of landscape structures or ecosystems, and a strategically connected fundamental infrastructure of abiotic and biotic systems, underlying the provision of multiple functions valuable to society. This concept moves beyond traditional approaches of “nature protection and preservation”, (re)focusing on the ecosystemic approach and the “continuum naturale”, emphasising the quality or potentiality of physical components, allowing the articulation with the nature conservation and at-risk areas. Portugal has long had legislation in place meant to protect the natural resources. Although the environmental policies are sectoral and unarticulated, and the environmental data is dispersed and absent. In addition, this study shows that the existing protected areas in Portugal, namely Natura 2000 and classified protected areas, are insufficient to ensure landscape ecological balance and avoid fragmentation. The main goal is to develop a methodology to map a National Ecological Network (NEN) for mainland Portugal, establish the theoretical framework of the EN/GI, by identifying and mapping the most valuable and sensitive areas that guarantee the ecosystem functioning through a multi-level ecological evaluation criteria that integrate the physical and biological systems. The Portuguese NEN map, with a 25 m spatial resolution, integrates in a single tool the Portuguese environmental policies more effectively, in order to facilitate its understanding and application into planning. Regarding the EN mapping method, it was used a GIS-based model made up of a sequence of analyses and evaluations that are driven by a GIS supported assessment of several indices/models used for each EN component. These NEN components were studied individually and collectively and the results, hierarchized in two levels, show that most of the ecological components do not overlap. The NEN1 has high biodiversity and ecological value, which means they are more vulnerable to anthropogenic activity. NEN1 covers a total of 67 % of the mainland, yet as of 2018, only 25 % is protected in nature conservation areas. Priority of action must be given to NEN1 in order to avoid/decrease landscape fragmentation, environmental risks, and natural disaster prevention. This paper contributes to the understanding of the NEN importance as an ecologically based tool towards a more sustainable landscape planning, and the basis of the development plans at national, regional and local levels in an integrated manner, instead of a compilation of disassociated often-contradictory planning tools. The benefits of a Portuguese NEN into a GI development and part of a (broader) nature base solutions by increasing the ecosystems quality and become less dependent on economic and social activities, helping in the restoration of degraded ecosystems and environmental risk prevention. Moreover, it represents the first attempt to map Portuguese EN, and addresses the lack of mapping and the inconsistent EN criteria. It is available online at http://epic-webgis-portugal.isa.ulisboa.pt.

Core principles for successfully implementing and upscaling Nature-based Solutions

Despite substantial increases in the scope and magnitude of biodiversity conservation and ecological restoration, there remains ongoing degradation of natural resources that adversely affects both biodiversity and human well- being. Nature-based Solutions (NbS) can be an effective framework for reversing this trend, by increasing the alignment between conservation and sustainable development objectives. However, unless there is clarity on its evolution, definition and principles, and relationship with related approaches, it will not be possible to develop evidence-based standards and guidelines, or to implement, assess, improve and upscale NbS interventions globally. In order to address this gap, we present the definition and principles underpinning the NbS framework, recently adopted by the International Union for Conservation of Nature, and compare it to (1) the Ecosystem Approach that was the foundation for developing the NbS definitional framework, and (2) four specific eco- system-based approaches (Forest Landscape Restoration, Ecosystem-based Adaptation, Ecological Restoration and Protected Areas) that can be considered as falling under the NbS framework. Although we found substantial alignment between NbS principles and the principles of the other frameworks, three of the eight NbS principles stand out from other approaches: NbS can be implemented alone or in an integrated manner with other solutions; NbS should be applied at a landscape scale; and, NbS are integral to the overall design of policies, measures and actions, to address societal challenges. Reversely, concepts such as adaptive management/governance, effectiveness, uncertainty, multi-stakeholder participation, and temporal scale are present in other frameworks but not captured at all or detailed enough in the NbS principles. This critical analysis of the strengths and weaknesses of the NbS principles can inform the review and revision of principles supporting specific types of NbS (such as the approaches reviewed here), as well as serve as the foundation for the development of standards for the successful implementation of NbS.

Evaluating natural infrastructure for flood management within the watersheds of selected global cities

Cities are dependent on their upstream watersheds for storage and gradual release of water into river systems. These watersheds act as important flood mitigation infrastructure, providing an essential ecosystem service. In this paper we use metrics from the WaterWorld model to examine the flood management-relevant natural infrastructure of the upstream watersheds of selected global cities. These metrics enable the characterisation of different types, magnitudes and geographical distributions of potential natural flood storage. The storages are categorised as either green (forest canopy, wetland and soil) or blue (water body and floodplain) storages and the proportion of green to blue indicates how different city upstream basin contexts provide different types and levels of storage which may buffer flood risk. We apply the WaterWorld method for examining flood risk as the ratio of accumulated modelled annual runoff volume to accumulated available green and blue water storage capacity. The aim of these metrics is to highlight areas where there is more runoff than storage capacity and thus where the maintenance or restoration of further natural infrastructure (such as canopy cover, wetlands and soil) could aid in storing more water and thus better alleviate flood risks. Such information is needed by urban planners, city authorities and governments to help prepare cities for climate change impacts.

The role of fish and fisheries in recovering from natural hazards: Lessons learned from Vanuatu

Coastal fisheries provide staple food and sources of livelihood in Pacific Island countries, and securing a sustainable supply is recognised as a critical priority for nutrition security. This study sought to better understand the role of fish for Pacific Island communities during disasters and in disaster recovery. To evaluate community impacts and responses after natural disasters, focus group discussions were held with men and women groups at ten sites across Shefa, Tafea, Malampa and Sanma provinces in Vanuatu. The combined impacts of category 5 Tropical Cyclone Pam (TC-Pam) in March 2015 and prolonged El-Niño induced drought have had a profound impact across much of Vanuatu. Terrestrial systems had been disproportionately impacted with substantial shortages in drinking water, garden crops, cash crops and damage to infrastructure. Localized impacts were noted on marine environments from TC-Pam and the drought, along with an earthquake that uplifted reef and destroyed fishing grounds in Malampa province. Communities in Malampa and Shefa provinces also noted a crown-of-thorns outbreak that caused coral mortality. The significant reduction in terrestrial-based food and income generation capacity generally led to increased reliance on marine resources to cope and a shift in diets from local garden food to rice. However, limited market access, lack of fishing skills and technology in many sectors of the community reduced the capacity for marine resources to support recovery. A flexible management approach allowed protected areas and species to be utilized as reservoirs of food and income when temporarily opened to assist recovery. These findings illustrate that fish and fisheries management is at the center of disaster preparedness and relief strategies in remote Pacific Island communities. High physical capital (e.g. infrastructure, water tanks and strong dwellings) is key for disaster preparedness, but supporting community social capital for the purpose of natural resource management and human capital for diverse adaptation skills can also improve community resilience. Recognizing the humanitarian value that well managed fisheries resources and skilled fishers can play to disaster relief adds another dimension to the imperative of improving management of coastal fisheries and aligning policies across sectors.

Achieving the national development agenda and the Sustainable Development Goals (SDGs) through investment in ecological infrastructure: A case study of South Africa

Ecological infrastructure (EI) refers to ecosystems that deliver services to society, functioning as a nature-based equivalent of, or complement to, built infrastructure. EI is critical for socio-economic development, supporting a suite of development imperatives at local, national and international scales. This paper presents the myriad of ways that EI supports sustainable development, using South Africa and the South African National Development Plan as a case study, linking to the Sustainable Development Goals on a global level. We show the need for EI across numerous development and sustainability issues, including food security, water provision, and poverty alleviation. A strategic and multi-sectoral approach to EI investment is essential for allocating scarce public and private resources for achieving economic and social-ecological priorities. Opportunities to unlock investment in EI, both internationally and on the national level, are identified. This includes leveraging private sector investment into landscape management and integrating the costs of managing EI into public sectors that benefit directly from ecosystem services, such as the water sector and infrastructure development. Additionally, investing in EI also aligns well with international development and climate change funds. Investment in EI from a range of innovative sources supports global and national development, while complementing other development investments.

Forest restoration can increase the Rio Doce watershed resilience

Rio Doce watershed has centuries of land degradation and it was the main victim of the worst environmental disaster in Brazil’s history. This process of deforestation and soil erosion could be significantly mitigated if compliance to the new Brazilian Native Vegetation Protection Law (NVPL) would be ensured. Here, we show how the percentage of forest kept in areas of permanent preservation (APP) required by the NVPL drives the overall resilience and resistance of the entire Rio Doce watershed and how it contributes to the national restoration commitments. We used water quality as a proxy for watershed resilience and resistance and we found that compliance to NVPL would require restoration of about 716 thousand hectares of riverine forest across the watershed. We found that increased forested areas improved watershed resistance and resilience during the rainy and dry seasons, respectively. Our estimates suggest that the implementation of the NVPL could improve water quality, in addition to removing 14 Gt CO2 yr−1 ha−1 from the atmosphere. At this scale, the forest restoration effort would represent 6% of Brazil’s restoration commitment. Financial feasibility of such a restoration enterprise is also achievable; at the highest possible estimate, it would compromise about 59% of the total fund proposed by the mining companies responsible for the accident. Given the low socioeconomic indicators of this basin, intervention should be designed so as to improve local livelihoods and, therefore, contribute to local adaptation and sustainable development.

Island-wide coastal vulnerability assessment of Sri Lanka reveals that sand dunes, planted trees and natural vegetation may play a role as potential barriers against ocean surges

Since the Indian Ocean tsunami on 26 December 2004, there have been continuous efforts to upgrade the (tsunami) early warning systems as well as their accessibility in local and regional places in South and Southeast Asia. Meanwhile, the protection offered by coastal vegetation like mangroves to the people, property and physical landscape was also recognized and prioritized by both public and private authorities at various governance levels. As more than 90% of the Sri Lankan coastline is vulnerable to water-related impacts and existing bioshields like mangroves are potentially able to protect less than one-third of it, if at all they are in good condition, an attempt was made to build knowledge on the other potential natural barriers along the coast. In this context, a ca. 2 km belt of the entire coast was digitized, classified and assessed for vulnerability in relation to the existing land-use/cover. First, a visually interpreted land-use/cover map comprising 16 classes was developed using Google Earth imagery (Landsat-5, 2003). Second, based on the Global Digital Elevation Model data from the ASTER satellite, the land-use/cover map was further re-classified for elevation demarcation into waterless, run-up and flooded areas. And finally, both vulnerable and less vulnerable areas were identified by taking into account the average wave heights that the 2004 tsunami reached in the country (North: 5.5 m, South: 7 m, East: 5 m and West: 3.75 m). Among the selected areas studied, Jaffna and Kaluvanchikudy-Komari are found to be vulnerable and, Trincomalee, Yala and Puttalam are less vulnerable. While vulnerability was largely associated with the conditions devoid of natural barriers, the less vulnerable areas had mangroves, Casuarina, dense vegetation and/or sand dunes as land cover, all of which might prove effective against ocean surges. However, these land cover types should never be considered as providing full protection against the type of threats that can be expected. As the present study provides only base-line information on island-wide vulnerability of areas to water-related impacts, further investigation and validation along similar research lines are needed to establish a blueprint for future preparedness.

Climate change influences on pollinator, forest, and farm interactions across a climate gradient

Climate impact models are often implemented at horizontal resolutions (“scales”) too coarse to be readily applied in local impact assessments. However, recent advancements in fine-scale modeling are allowing the creation of impact models that can be applied to landscape-scale adaptation planning. Here, we illustrate the use of fine-scale impact models for landscape-scale adaptation planning of pollination services for six sites in Central America. The strategies include the identification of (1) potential reservoir areas that may retain bee diversity and serve as a source of recolonization after climate shocks such as droughts; and (2) potential restoration areas, where improving forest cover is likely to lead to increases in pollinator services both in the present and in the future. Coarse-scale (>1-km horizontal resolution) climatic controls on pollinator diversity and forest cover determine the general location of these areas in our six landscapes. Fine-scale (<100-m horizontal resolution) variation in climatic water deficit provides an index of forest health which can help identify intervention strategies within these zones. All sites have significant areas in which protecting or restoring forest cover is likely to enhance pollination services. The gradient in rainfall change across the study sites dictates choice of adaptation strategies.