The Mountain-River-Lake Program (MRL) was implemented since 25 years ago in the Poyang Lake basin, southern China. It consists of series of forest restoration projects that aim to address severe soil and water losses, and improve farmer’s livelihoods. To assess the effectiveness of the program, systematic planning, integrated research and comprehensive monitoring were used to illustrate how forest restoration projects that consider both ecological, social and economic perspectives can improve both the environment and society, and eradicate the “ecological-poverty trap”. We found that the overall ecological effects of the program are beneficial, and the socioeconomic effects are mostly positive. Forest plantations covering 4.92 × 106 ha were established, which promoted increased forest coverage from a minimum of 26.98% to 60.05% at present. The amount of carbon storage in forest increased significantly, with net carbon sequestration of plantation forests increased from 2.29 TgC/year to 10.52 TgC/year. The results also indicated that the area of land affected by heavy and severe soil erosion has decreased by 55.2% and 53.6%, respectively, while the water holding capacity was 25.2% higher in 2009 than that in 1990. The net income for farmers was almost 6 times greater than that before the program, and the number of people living below the poverty line decreased from 10 million to 0.865 million. This assessment has confirmed that if we cannot improve the livelihood of local communities and encourage them to participate in such programs, we will be unable to restore and manage degraded environments. The continuing and future impacts of the program may be even greater, and will provide important lessons and experiences for other ecological restoration programs.
Habitat Type: RIV_L
Large rivers
Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan (‘water self-reliance mission’). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation.
The main objective of this paper is to combine and integrate environmental, economic and social impact assessment procedures in order to support decision-making in the context of flood control policy in the Netherlands. The hydraulic, hydrological, ecological, economic and social effects of alternative flood control policies, such as land use change and floodplain restoration, are evaluated using a combination of advanced quantitative modelling techniques and qualitative expert judgement. The results from the ecological, economic and social impact assessment are evaluated in an integrated way through cost – benefit analysis (CBA) and multi-criteria analysis (MCA). As expected, these methods produce different outcomes. Although traditional flood control policy-building higher and stronger dikes-is a cost-effective option, investment in alternative flood control policy-land use changes and floodplain restoration-can be justified on the basis of both CBA and MCA when including the additional ecological and socio-economic benefits in the long run. The outcome of the MCA appears to be especially sensitive to the inclusion of the qualitative scores for the expected social impacts of land use change and floodplain restoration. An important research question remains how to assess, integrate and trade-off (1) significantly different types of impacts in a methodologically sound way in both cost – benefit and multi-criteria analysis, and (2) significantly different types and quality of available knowledge and information about these impacts.