Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes

The production of sufficient food for an increasing global population while conserving natural capital is a major challenge to humanity. Tree-mediated ecosystem services are recognized as key features of more sustainable agroecosystems but the strategic management of tree attributes for ecosystem service provision is poorly understood. Six agroforestry and tree cover transition studies, spanning tropical/subtropical forest zones in three continents, were synthesized to assess the contribution of tree cover to the conservation of biodiversity and ecosystem services. Loss of native earthworm populations resulted in 76% lower soil macroporosity when shade trees were absent in coffee agriculture. Increased tree cover contributed to 53% increase in tea crop yield, maintained 93% of crop pollinators found in the natural forest and, in combination with nearby forest fragments, contributed to as much as 86% lower incidence for coffee berry borer. In certain contexts, shade trees contributed to negative effects resulting from increases in abundance of white stem borer and lacebugs and resulted in 60% reduction of endangered tree species compared to forest. Managing trees for ecosystem services requires understanding which tree species to include and how to manage them for different socio-ecological contexts. This knowledge needs to be shared and translated into viable options with farming communities.

Optimizing investments in national-scale forest landscape restoration in Uganda to maximize multiple benefits

Forest loss and degradation globally has resulted in declines in multiple ecosystem services and reduced habitat for biodiversity. Forest landscape restoration offers an opportunity to mitigate these losses, conserve biodiversity, and improve human well-being. As part of the Bonn Challenge, a global effort to restore 350 million hectares of deforested and degraded land by 2030, over 30 countries have recently made commitments to national forest landscape restoration. In order to achieve these goals, decision-makers require information on the potential benefits and costs of forest landscape restoration to efficiently target investments. In response to this need, we developed an approach using a suite of ecosystem service mapping tools and a multi-objective spatial optimization technique that enables decision-makers to estimate the potential benefits and opportunity costs of restoration, visualize tradeoffs associated with meeting multiple objectives, and prioritize where restoration could deliver the greatest benefits. We demonstrate the potential of this approach in Uganda, one of the nations committed to the Bonn Challenge. Using maps of the potential benefits and costs of restoration and efficiency frontiers for optimal restoration scenarios, we were able to communicate how ecosystem services benefits vary spatially across the country and how different weights on ecosystem services objectives can affect the allocation of restoration across Uganda. This work provides a generalizable approach to improve investments in forest landscape restoration and illuminates the tradeoffs associated with alternative restoration strategies.

Using Ecosystem-Based Adaptation Actions to Tackle Food Insecurity

Given the unfortunate, frequent occurrence of droughts, practical actions are ever more critical to ensure achieving food security in this region [Africa]. Understanding what has previously worked can provide a guiding vision as we proactively address the current crisis. Food security and human security are inextricably linked, and innovative initiatives are needed to create opportunities to face continental challenges regarding future food security requirements. Sustainable food security strategies must thus, among others, develop new opportunities, increase productivity in agriculture, and assist in the development of domestic markets that can withstand international economic volatility. Investment in EbA is one of the most important keys to job creation opportunities that simultaneously contribute to poverty eradication and to sustainable long-term food security. Such investments will improve the competitiveness of domestic production, increase farmers’ profits, and make food more affordable for the poor. Creative strategies supported by dynamic leadership and management are the only way that Africa will be able to achieve the envisaged food-secure society in which its population does not experience fear of want. With proper planning, transparent resource management, innovative food security policies, and integrative agriculture inputs and outputs, it is not too late to turn the Africa’s food crisis to the benefit of local communities.

Carbon sequestration and biodiversity following 18 years of active tropical forest restoration

Vast areas of degraded tropical forest, combined with increasing interest in mitigating climate change and conserving biodiversity, demonstrate the potential value of restoring tropical forest. However, there is a lack of long-term studies assessing active management for restoration. Here we investigate Above-Ground Biomass (AGB), forest structure, and biodiversity, before degradation (in old-growth forest), after degradation (in abandoned agricultural savanna grassland), and within a forest that is actively being restored in Kibale National Park, Uganda. In 1995 degraded land in Kibale was protected from fire and replanted with native seedlings (39 species) at a density of 400 seedlings ha−1. Sixty-five plots (50 m × 10 m) were established in restoration areas in 2005 and 50 of these were re-measured in 2013, allowing changes to be assessed over 18 years. Degraded plots have an Above Ground Biomass (AGB) of 5.1 Mg dry mass ha−1, of which 80% is grass. By 2005 AGB of trees ⩾10 cm DBH was 9.5 Mg ha−1, increasing to 40.6 Mg ha−1 by 2013, accumulating at a rate of 3.9 Mg ha−1 year−1. A total of 153 planted individuals ha−1 (38%) remained by 2013, contributing 28.9 Mg ha−1 (70%) of total AGB. Eighteen years after restoration, AGB in the plots was 12% of old-growth (419 Mg ha−1). If current accumulation rates continue restoration forest would reach old-growth AGB in a further 96 years. Biodiversity of degraded plots prior to restoration was low with no tree species and 2 seedling species per sample plot (0.05 ha). By 2005 restoration areas had an average of 3 tree and 3 seedling species per sample plot, increasing to 5 tree and 9 seedling species per plot in 2013. However, biodiversity was still significantly lower than old-growth forest, at 8 tree and 16 seedling species in an equivalent area. The results suggest that forest restoration is beneficial for AGB accumulation with planted stems storing the majority of AGB. Changes in biodiversity appear slower; possibly due to low stem turnover. Overall this restoration treatment is an effective means of restoring degraded land in the area, as can be seen from the lack of regeneration in degraded plots, which remain low-AGB and diversity, largely due to the impacts of fire and competition with grasses.

Exploring adaptation strategies of coffee production to climate change using a process-based model

The response of coffee (Coffea arabica L.) agronomical performance to changes in climate and atmospheric carbon dioxide concentration ([CO2)) is uncertain. Improving our understanding of potential responses of the coffee plant to these changes while taking into consideration agricultural management is required for identifying best-bet adaptation strategies. A mechanistic crop modelling approach enables the inclusion of a wide range of prior knowledge and an evaluation of assumptions. We adapt a model by connecting it to spatially variable soil and climate data, by which we are able to calculate yield of rain-fed coffee on a daily time-step. The model takes account of variation in microclimate and water use as influenced by shade trees. The approach is exemplified at two East African sites with distinctly different climates (Mt. Elgon, Uganda, and Mt. Kilimanjaro, Tanzania) using a global sensitivity analysis for evaluation of model behavior and prior parameter uncertainty assessment. We use the climate scenario driven by the Hadley Global Environment Model 2-Earth System representative for the year 2050 to discuss potential responses of the coffee plant to interactions of elevated [COO, temperature, and water availability. We subsequently explore the potential for adaptation to this scenario through shade management. The results indicate that under current climatic conditions optimal shade cover at low elevations (1000 m.a.s.l.) is 50%, provided soil water storage capacity is sufficient, enabling a 13.5% increase in coffee yield compared to unshaded systems. Coffee plants are expected to be severely impacted (ranging from 18% to 32% coffee yield reductions) at low elevations by increased temperature ( + 2.5 degrees C) and drought stress when no elevated [CO2] is assumed. Water competition between coffee and shade trees are projected to be a severe limitation in the future, requiring careful selection of appropriate shade tree species or the adoption of other technologies like conservation measures or irrigation. The [CO2]-fertilization effect could potentially mitigate the negative effect of temperature increase and drought stress up to 13-21% depending on site conditions and will increase yield at higher altitudes. High uncertainty remains regarding impacts of climate change on flowering. The presented model allows for estimating the optimal shade level along environmental gradients now and in the future. Overall, it shows that shade proves to be an important adaptation strategy, but this requires improved understanding regarding site-specific management and selection of tree species. Moreover, we do not yet include climate change uncertainty.