A spatial analysis is presented that aims to synthesize the evidence for climate and social dimensions of the ‘regreening” of the Sahel. Using an independently constructed archival database of donor-funded interventions in Burkina Faso, Mali, Niger, and Senegal in response to the persistence of drought in the 1970s and 1980s, the spatial distribution of these interventions is examined in relation to population density and to trends in precipitation and in greenness. Three categories of environmental change are classified: 1) regions at the northern grassland/shrubland edge of the Sahel where NDVI varies interannually with precipitation, 2) densely populated cropland regions of the Sahel where significant trends in precipitation and NDVI decouple at interannual time scales, and 3) regions at the southern savanna edge of the Sahel where NDVI variation is independent of precipitation. Examination of the spatial distribution of environmental change, number of development projects, and population density brings to the fore the second category, covering the cropland areas where population density and regreening are higher than average. While few, regions in this category coincide with emerging hotspots of regreening in northern Burkina Faso and southern central Niger known from case study literature. In examining the impact of efforts to rejuvenate the Sahelian environment and livelihoods in the aftermath of the droughts of the 1970s and 1980s against the backdrop of a varying and uncertain climate, the transition from desertification to regreening discourses is framed in the context of adaptation to climate change.
Country: Niger
Niger
Over the last decades, desertification, drought and erratic rainfall have become much debated and distressing issues for Niger, given the country’s reliance on natural resources and agriculture for livelihood. A decisive answer on the causes and extent of both meteorological and soil water drought is therefore of importance to enable effective policy and resilience, but adaption to future climate change often entails the very same practices as rehabilitating degraded land to enhance water productivity. This paper investigates the extent of both meteorological and soil water drought in Niger by combining rainfall and soil water analysis and assesses the potential of various small scale WSC techniques to tackle crop growth limitations in Niger. It presents a trend analysis of rainfall and drought parameters and compares the effect of 5 treatments (zai + manure, demi-lunes + manure, no till with scarification + manure, control + manure and control) on crop performance and soil moisture profiles. The WSC-treatments zai and demi-lunes produce significantly higher yields due to increased soil moisture levels throughout the season. Besides the improved soil moisture conditions, the potential of WSC practices to increase the agronomic efficiency is also largely explained by their impact on the soil nutrient status.
The desertification paradigm has a long history in the Sahel, from colonial to modern times. Despite scientific challenge, it continued to be influential after independence, revived by the dramatic droughts of the 1970s and 1980s, and was institutionalized at local, national and international levels. Collaborative efforts were made to improve scientific knowledge on the functioning, environmental impact and monitoring of selected agricultural systems over the long term, and to assess trends in the ecosystems, beyond their short term variability. Two case studies are developed here: the pastoral system of the arid to semi-arid Gourma in Mali, and the mixed farming system of the semi-arid Fakara in Niger. The pastoral landscapes are resilient to droughts, except on shallow soils, and to grazing, following a non-equilibrium model. The impact of cropping on the landscape is larger and longer lasting. It also induces locally high grazing pressure that pushes rangeland resilience to its limits. By spatial transfer of organic matter and mineral, farmers’ livestock create patches of higher fertility that locally enhance the system’s resilience. The agro-pastoral ecosystem remains non-equilibrial provided that inputs do not increase stocking rates disproportionately. Remote sensing confirms the overall re-greening of the Sahel after the drought of the 1980s, contrary to the paradigm of desertification. Ways forward are proposed to adapt the pastoral and mixed farming economies and their regional integration to the context of human and livestock population growth and expanding croplands.