Increasing pressure on land resources necessitates landscape management strategies that simultaneously deliver multiple benefits to numerous stakeholder groups with competing interests. Accordingly, we developed an approach that combines ecological data on all types of ecosystem services with information describing the ecosystem service priorities of multiple stakeholder groups. We identified landscape scenarios that maximize the overall ecosystem service supply relative to demand (multifunctionality) for the whole stakeholder community, while maintaining equitable distribution of ecosystem benefits across groups. For rural Germany, we show that the current landscape composition is close to optimal, and that most scenarios that maximize one or a few services increase inequities. This indicates that most major land-use changes proposed for Europe (for example, large-scale tree planting or agricultural intensification) could lead to social conflicts and reduced multifunctionality. However, moderate gains in multifunctionality (4%) and equity (1%) can be achieved by expanding and diversifying forests and de-intensifying grasslands. More broadly, our approach provides a tool for quantifying the social impact of land-use changes and could be applied widely to identify sustainable land-use transformations.
Country: Germany
Germany
The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity–ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.
Compared to technical infrastructure, nature-based solutions, NBS, strive to work with nature and to move beyond business-as-usual practices in order to address societal challenges such as flood risks. This research aims to spatially identify possible NBS areas and evaluate the areas capacity to provide selected ecosystem services, ES, for the Lahn river landscape in Germany. The research follows the functional landscape approach using hydromorphological landscape units, HLU, based on specific biophysical spatial criteria, such as slope, to then identify locations which may be considered suitable for NBS. The current ES delivery of these possible NBS areas is then evaluated. The three ES assessed are carbon storage, nutrient retention and recreation. We then undertake a geospatial comparison analysis to show the spatial relationships and patterns that emerge in regards to the ES configuration of the distinct NBS apt areas. Results show the HLU method serves to delineate and identify areas where NBS may exist or be implemented. The data depicts a distinct spatial pattern for each possible NBS space and complementary ES delivery. This explorative method is a useful spatial approach that can support NBS implementation and serve to investigate the multiple benefits NBS provide. The use of ecosystem services to compare and understand NBS is a viable prospect that must, however, be cautiously, locally and scientifically approached. Noticeable limitations regarding ES assessment remain, as available methods are often insufficiently inclusive of natural ecosystem processes and functions. Further research should assess a broader spectrum of NBS and their delivery of ES.
The formulation of management plans as required by EU environmental policies such as the Floods Directive may facilitate the uptake of nature-based solutions (NBS) into practice. Previous research has indicated that the uptake of NBS in water management plans is still low and hindered by various elements of the existing water governance system. However, research so far neglected the role of water managers as “plan-makers” of solution strategies and programs of measures, as well as their beliefs in choosing certain measures in the plan-making process. The aim of this study is to shed more light on the plan-makers’ reasoning for integrating, or not integrating, NBS into specific flood risk management plans (FRMPs). We conducted ten qualitative interviews with plan-makers from Germany and adopted a grounded theory approach to identify their beliefs that underlie the process of formulating FRMPs as well as their perceived role in this process. The analysis reveals a dominance of shared substantive and relational beliefs that are obstructive to a greater uptake of NBS in FRMPs. In particular, identified beliefs about NBS often do not align with their self-perception of their role in being the “plan-makers”. We present a differentiated portrait of water managers as key actors in the decision-making on FRMPs, illustrating that while water managers are belonging to the same distinct professional group with a similar social role in the decision-making process, they do not necessarily share the same preferences.
Nature-based solutions (NBS) can protect, manage and restore natural or modified ecosystems. They are a multidisciplinary, integrated approach to address societal challenges and some natural hazards effectively and adaptively, simultaneously providing human well-being and biodiversity benefits. NBS applications can be easily noticed in circular cities, establishing an urban system that is regenerative and accessible. This paper aims to offer a review on NBS for urban water management from the literature and some relevant projects running within the COST Action ‘Implementing nature-based solutions for creating a resourceful circular city’. The method used in the study is based on a detailed tracking of specific keywords in the literature using Google Scholar, ResearchGate, Academia.edu, ScienceDirect and Scopus. Based on this review, three main applications were identified: (i) flood and drought protection; (ii) the water-food-energy nexus; and (iii) water purification. The paper shows that NBS provide additional benefits, such as improving water quality, increasing biodiversity, obtaining social co-benefits, improving urban microclimate, and the reduction of energy consumption by improving indoor climate. The paper concludes that a systemic change to NBS should be given a higher priority and be preferred over conventional water infrastructure.
Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management (NFM), emphasising the restoration of innate hydrological pathways, provides important regulating services in relation to both runoff rates and water quality and is heralded as a potentially important climate change adaptation strategy. This paper draws together 25 NFM schemes, providing a meta-analysis of hydrological performance along with a wider consideration of their net (dis) benefits. Increasing woodland coverage, whilst positively linked to peak flow reduction (more pronounced for low magnitude events), biodiversity and carbon storage, can adversely impact other provisioning service-especially food production. Similarly, reversing historical land drainage operations appears to have mixed impacts on flood alleviation, carbon sequestration and water quality depending on landscape setting and local catchment characteristics. Wetlands and floodplain restoration strategies typically have fewer disbenefits and provide improvements for regulating and supporting services. It is concluded that future NFM proposals should be framed as ecosystem-based assessments, with trade-offs considered on a case-by-case basis.
Nature-based solutions (NBS) in river landscapes, such as restoring floodplains, can not only decrease flood risks for downstream communities but also provide co-benefits in terms of habitat creation for numerous species and enhanced delivery of diverse ecosystem services. This paper aims to explore how landscape planning and governance research can contribute to the identification, design and implementation of NBS, using the example of water-related challenges in the landscape of the Lahn river in Germany. The objectives are (i) to introduce the NBS concept and to provide a concise definition for application in planning research, (ii) to explore how landscape planning and governance research might support a targeted use and implementation of NBS, and (iii) to propose an agenda for further research and practical experimentation. Our methods include a focused literature review and conceptual framework development. We define NBS as actions that alleviate a well-defined societal challenge (challenge-orientation), employ ecosystem processes of spatial, blue and green infrastructure networks (ecosystem processes utilization), and are embedded within viable governance or business models for implementation (practical viability). Our conceptual framework illustrates the functions of NBS in social-ecological landscape systems, and highlights the complementary contributions of landscape planning and governance research in developing and implementing NBS. Finally, a research and experimentation agenda is proposed, focusing on knowledge gaps in the effectiveness of NBS, useful approaches for informed co-design of NBS, and options for implementation. Insights from this paper can guide further studies and support testing of the NBS concept in practice
Nature-based solutions (NBS) in river landscapes, such as restoring floodplains, can not only decrease flood risks for downstream communities but also provide co-benefits in terms of habitat creation for numerous species and enhanced delivery of diverse ecosystem services. This paper aims to explore how landscape planning and governance research can contribute to the identification, design and implementation of NBS, using the example of water-related challenges in the landscape of the Lahn river in Germany. The objectives are (i) to introduce the NBS concept and to provide a concise definition for application in planning research, (ii) to explore how landscape planning and governance research might support a targeted use and implementation of NBS, and (iii) to propose an agenda for further research and practical experimentation. Our methods include a focused literature review and conceptual framework development. We define NBS as actions that alleviate a well-defined societal challenge (challenge-orientation), employ ecosystem processes of spatial, blue and green infrastructure networks (ecosystem processes utilization), and are embedded within viable governance or business models for implementation (practical viability). Our conceptual framework illustrates the functions of NBS in social-ecological landscape systems, and highlights the complementary contributions of landscape planning and governance research in developing and implementing NBS. Finally, a research and experimentation agenda is proposed, focusing on knowledge gaps in the effectiveness of NBS, useful approaches for informed co-design of NBS, and options for implementation. Insights from this paper can guide further studies and support testing of the NBS concept in practice.
To meet the challenge of proactive ecosystem-based climate mitigation and adaptation, new sources of funding are needed. Peatlands provide the most efficient global store of terrestrial carbon. Degraded peatlands, however, contribute disproportionally to global greenhouse gas (GHG) emissions, with approximately 25% of all CO2 emissions from the land use sector, while restoration can be cost-effective. Peatland restoration therefore provides a new opportunity for investing in ecosystem-based mitigation through the development of carbon markets. Set in the international policy and carbon market context, this paper demonstrates the necessary scientific evidence and policy frameworks needed to develop ecosystem service markets for peatland restoration. Using the UK and NE Germany as case studies, we outline the climate change mitigation potential of peatlands and how changes in GHG emissions after restoration may be measured. We report on market demand research in carbon market investments that provide sponsors with quantification and officially certified recognition of the climate and other co-benefits. Building on this, we develop the necessary requirements for developing regional carbon markets to fund peatland restoration. While this paper focuses on the UK and German context, it draws on international experience, and is likely to be directly applicable across peatlands in Europe and North America.
“Ecological Infrastructure (EI)” are defined as naturally functioning ecosystems that deliver valuable services to people, such as healthy mountain catchments, rivers, wetlands, coastal dunes, and nodes and corridors of natural habitat, which together form a network of interconnected structural elements in the landscape. On the other hand, natural disaster occur at the locations where habitat was reduced due to the changes of land use, in which the land was converted to the settlements and agricultural cropland. Hence, habitat loss and natural disaster are linked closely. Ecological infrastructure is the nature-based equivalent of built or hard infrastructure, and is as important for providing services and underpinning socio-economic development. Hence, ecological infrastructure is expected to contribute to functioning as ecological disaster reduction, which is termed Ecosystem-based Solutions for Disaster Risk Reduction (Eco-DRR). Although ecological infrastructure already exists in the landscape, it might be degraded, needs to be maintained and managed, and in some cases restored. Maintenance and restoration of ecological infrastructure is important for security of human lives. Therefore, analytical tool and effective visualization tool in spatially explicit way for the past natural disaster and future prediction of natural disaster in relation to ecological infrastructure is considered helpful. Hence, Web-GIS based Ecological Infrastructure Environmental Information System (EI-EIS) has been developed. This paper aims to describe the procedure of development and future application of EI-EIS. The purpose of the EI-EIS is to evaluate functions of Eco-DRR. In order to analyse disaster data, collection of past disaster information, and disaster-prone area is effective. First, a number of digital maps and analogue maps in Japan and Europe were collected. In total, 18,572 maps over 100 years were collected. The Japanese data includes Future-Pop Data Series (1,736 maps), JMC dataset 50m grid (elevation) (13,071 maps), Old Edition Maps: Topographic Map (325 maps), Digital Base Map at a scale of 2500 for reconstruction planning (808 maps), Detailed Digital Land Use Information for Metropolitan Area (10 m land use) (2,436 maps), and Digital Information by GSI (national large scale map) (71 maps). Old Edition Maps: Topographic Map were analogue maps, and were scanned and georeferenced. These geographical area covered 1) Tohoku area, 2) Five Lakes of Mikata area (Fukui), 3) Ooshima Island (Tokyo), 4) Hiroshima area (Hiroshima), 5) Okushiri Island (Hokkaido), and 6) Toyooka City area (Hyogo). The European data includes topographic map in Germany (8 maps), old topographic map in Germany (31 maps), ancient map in Germany (23 maps), topographic map in Austria (9 maps), old topographic map in Austria (17 maps), and ancient map in Austria (37 maps). Second, focusing on Five Lakes of Mikata area as an example, these maps were integrated into the ArcGIS Online (R) (ESRI). These data can be overlaid, and time-series data can be visualized by a time slider function of ArcGIS Online.
Compared to traditional hard engineering, nature-based flood protection can be more cost effective, use up less raw materials, increase system adaptability and present opportunities to improve ecosystem functioning. However, high flood safety standards cause the need to combine nature-based structures with traditional civil engineered structures. This increases complexity assessing when and how ecological and engineering objectives of such flood protection systems are achieved. This study classifies the degree to which coastal designs are nature based using criteria for ecosystem-based management (EBM). For the engineering criterion the distinction between main and supporting structures is introduced. To evaluate the ecological criterion five design concepts have been introduced, ranging from completely engineered to completely nature-based. The method results in an EBM-ranking of the coast, showing where a particular flood protection design stands on the range between completely engineered (low EBM-rank) and nature-based (high EBM-rank). It thus facilitates comparison of different flood protection systems. The method was the applied on the North-Sea coast of Belgium, the Netherlands, and Germany. The results show that combinations of civil-engineered and nature-based structures are widely applied. However, due to the overall low contribution to flood protection by the nature-based structures, about 85% of the coast is dominated by engineered structures. The majority of these stretches is located in relatively sheltered areas. Improving the flood protection capacity of the nature-based structures in these areas is hard to achieve. Therefore, application of more nature-based design concepts on the main structures is the most promising way to improve the EBM-rank of many flood protection systems.
Ecosystem-based approaches provide opportunities for climate policy to reduce greenhouse gas (GHG) emissions, to expand the adaptive capacities and resilience of land systems to a changing climate, and to simultaneously protect biodiversity and ecosystems services (ESS). However, knowledge about the economic benefits and cost-efficiency of ecosystem-based approaches is still limited. The objective of this paper is to enhance understanding of synergies and trade-offs between climate policy related measures and nature conservation and how ecosystem-based approaches can contribute to both climate as well as biodiversity and ESS conservation goals, through overall economic analyses to inform balanced decision making. The paper builds upon the current state of knowledge as brought together by contributors to the German national TEEB-study “Natural Capital and Climate Policy – Synergies and Conflicts”. We present options and lessons learned from major land-use sectors of high relevance for ecosystem-based approaches to climate change, namely agriculture, peatlands, forests, wetlands and coastal and marine ecosystems. Based on these assessments, we argue that successful implementation of an ecosystem based climate policy requires effective coordination and coherence between sectors and their respective policies, for example agriculture, forestry and energy. We identify specific targets for an ecosystem-based climate policy and options for achieving this coherent implementation.
The study deals with the problem of evaluating management strategies for pure stands of Norway spruce (Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2% would decrease the amount of carbon.
Contemporary climate change is characterized both by increasing mean temperature and increasing climate variability such as heat waves, storms, and floods. How populations and communities cope with such climatic extremes is a question central to contemporary ecology and biodiversity conservation. Previous work has shown that species diversity can affect ecosystem functioning and resilience. Here, we show that genotypic diversity can replace the role of species diversity in a species-poor coastal ecosystem, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing the genotypic diversity of the cosmopolitan seagrass Zostera marina enhanced biomass production, plant density, and faunal abundance, despite near-lethal water temperatures due to extreme warming across Europe. Net biodiversity effects were explained by genotypic complementarity rather than by selection of particularly robust genotypes. Positive effects on invertebrate fauna suggest that genetic diversity has second-order effects reaching higher trophic levels. Our results highlight the importance of maintaining genetic as well as species diversity to enhance ecosystem resilience in a world of increasing uncertainty.
Climate models indicate that global warming will stimulate atmospheric exchange processes and increase rainfall variability, leading to longer dry periods and more intense rainfall events. Recent studies suggest that both the magnitude of the rainfall events and their frequency may be as important for temperate grassland productivity as the annual sum. However, until now interactive effects between land management practice, such as mowing frequency, and rainfall variability on productivity and forage quality have not been studied in detail. Here, we present the data from a field experiment (EVENT II) in which a Central-European grassland was subjected to increased spring rainfall variability (low, intermediate and extreme rainfall variability without any change to the rainfall amount) and increased mowing frequency (four times compared to twice a year). We assessed biomass production, forage quality parameters, root-length and shoot-root ratio. Enhanced spring rainfall variability reduced midsummer productivity and the leaf N and protein concentrations of a target species, but did not exert any long-term effects on biomass production and forage quality in late summer. However, the increased spring rainfall variability reduced aboveground net primary productivity by 15%. More frequent mowing increased productivity in the first year of the study, but decreased productivity at the end of the second year, showing a decline in the potential for overcompensation after a history of more intense mowing. Generally, more frequent mowing decreased the shoot-root ratio and increased the concentration of leaf N. Increased mowing frequency neither buffered, nor amplified the adverse effects of rainfall variability on productivity, but made leaf N concentrations in early summer more responsive to altered rainfall patterns. These results highlight the fact that even relatively small and short-term alterations to rainfall distribution can reduce production and forage quality, with little buffering capacity of altered mowing frequency. Comparisons with productivity data from the first year of the study, in which both, rainfall distribution and rainfall amount were modified, demonstrate the crucial role of sufficient moisture (annual rainfall amount) for grassland resilience: in this first year, negative effects of extreme rainfall variability lasted until the end of the year. To conclude, increased rainfall variability under climate change will likely affect agricultural yield in temperate meadows. Management strategies to buffer these effects have yet to be developed.