The effects of a decade of agri-environment intervention in a lowland farm landscape on population trends of birds and butterflies

Redhead, J.W., et al. | Journal of Applied Ecology | 2022 | Peer Reviewed | Original research |


  1. Declines in farmland biodiversity remain evident despite over three decades of research and implementation of agri-environment schemes (AES). Although positive effects of AES are often demonstrated locally or in the short term, studies exploring longer term trends in biodiversity often show contradictory results. Evidence for the potential of AES to drive beneficial changes in populations remains sparse, especially for mobile taxa such as birds and butterflies.
  2. We analysed the abundance of 12 widespread bird and 9 butterfly species from a 10-year study of AES intervention in a farmland landscape in southern England. We compared estimates of annual population growth rates from our study landscape with rates derived from large-scale national monitoring schemes in equivalent landscapes without substantial AES.
  3. Species trends in our study landscape were frequently stable or increasing, in contrast to concurrent declining trends in equivalent landscapes without AES. These differences were significant for total abundance of granivorous species and for chaffinch Fringilla coelebs, blue tit Cyanistes caeruleus and great tit Parus major individually. For butterflies, differences in trends were significantly more positive for gatekeeper Pyronia tithonus and green-veined white Pieris napi, while small white P. rapae showed a trend that was significantly more negative in our study landscape.
  4. Synthesis and applications. Our results demonstrate that, for some bird and butterfly species, the higher abundances associated with areas of AES uptake within a typical commercial farmland landscape can co-occur with positive or stable population trends over long time scalesĀ and that these trends can show significant differences from those in equivalent landscapes without substantial AES interventions. Our results suggest that previously observed inconsistencies in AES benefits may in part reflect a lack of long-term studies with accurate data on AES uptake and quality (i.e. successful implementation and management). Our results, thus, affirm the importance of delivering and monitoring high-quality AES options if the design and implementation of the next generation of AES is to achieve significant benefits for biodiversity.