Management of carob tree orchards in Mediterranean ecosystems: strategies for a carbon economy implementation

Correia, P. J. et al. | Agroforestry Systems | 2017 | Peer Reviewed | Original research |


This paper offers a different framework for managing Mediterranean drought carob-tree orchard ecosystems. Two dry-farming systems were compared during two consecutive years: pure productive orchards and mixed orchards in a total of 360 mature trees distributed by 18 plots with areas of 0.55 and 0.30 ha per plot, respectively. Carob, fig, almond and olive trees compose mixed orchards. Trees of the mixed orchards were more productive than those of pure orchards. The main problem of both systems was the large variability and the low fruit production due to non-bearing trees, inducing unfavorable economic returns. Yield varied between 7.7 and 28.5 kg tree(-1) respectively in pure and mixed orchards. In this paper we propose to use carbon sequestration calculations as an added benefit to farmers. A carbon stocking model estimation was established, based on trunk diameters of different trees. We depicted two management scenarios based on fruits production and carbon sequestration incomes: a low value scenario, using mean fruit production, and a high valuable scenario based on the hypothesis that all trees reached its potential maximum. Since under dry-farming systems fruit production irregularity is still a pendent problem, mixed orchards may offer a potential higher revenue, while maintaining higher crop diversification and whole biodiversity. C sequestration benefit, as here we purpose, may represent 125-300 % of income, respectively under low or high valuable scenario. Thus, CO2 equivalent is a novel ecological economic incentive that may potentiate a new income for farmers while assuring carob ecosystem services.