Welcome to our interactive bibliography. Here you can explore publications relating to Nature-based Solutions and their potential to address societal challenges, including climate change adaptation & mitigation, disaster risk reduction, ecosystem health, food & water security, and human wellbeing & development. For papers and other outputs directly produced by the Nature-based Solutions Initiative please visit our outputs page.
Filter
711 publications found
Walking on two legs: a pathway of Indigenous restoration and reconciliation in fire-adapted landscapes
Worldwide, Indigenous peoples are leading the revitalization of their/our cultures through the restoration of ecosystems in which they are embedded, including in response to increasing “megafires.” Concurrently, growing Indigenous-led movements are calling for governments to implement Indigenous rights, titles and treaties, and many settler-colonial governments are committing to reconciliation with Indigenous peoples and to implementing the United Nations Declaration on the Rights of Indigenous Peoples. Yet, despite growing recognition that just and effective conservation is only possible through partnerships with, or led by, Indigenous peoples, decolonizing approaches to restoration have received insufficient attention. However, reconciliation will be incomplete without Indigenous-led restoration of Indigenous lands, knowledges, and cultures. In this article, we introduce the concept of “walking on two legs” to guide restoration scientists and practitioners in advancing the interconnected processes of Indigenous-led restoration and reconciliation in Indigenous territories. As an action-oriented framework articulated by Secwépemc Elder Ronald E. Ignace, “walking on two legs” seeks to bring Indigenous knowledges into balance with western scientific knowledge in service of upholding an Indigenous stewardship ethic that is embedded in Indigenous ways of relating to land and embodies principles of respect, reciprocity, and responsibility. Grounding this discussion in the context of fire-adapted ecosystems of western Canada and unceded and traditional Secwépemc territory, Secwepemcúl̓ecw, we argue that walking on two legs, along with principles of reconciliation, offers a pathway to uphold respectful relationships with Indigenous peoples, knowledges, and territories through Indigenous-led restoration.
Limited time and resources remain to constrain the climate crisis. Natural climate solutions represent promising options to protect, manage and restore natural lands for additional climate mitigation, but they differ in (1) the magnitude and (2) immediacy of mitigation potential, as well as (3) cost-effectiveness and (4) the co-benefits they offer. Counter to an emerging preference for restoration, we use these four criteria to propose a general rule of thumb to protect, manage and then restore lands, but also show how these criteria explain alternative prioritization and portfolio schemes. This hierarchy offers a decision-making framework for public and private sector actors to optimize the effectiveness of natural climate solutions in an environment in which resources are constrained, and time is short.
The potential contribution of terrestrial nature-based solutions to a national ‘net zero’ climate target
Bradfer-Lawrence, T. et al.https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2664.14003 (2021).Original Research. Journal of Applied Ecology
Abstract
Many national governments have incorporated nature-based solutions (NbS) in their plans to reduce net greenhouse gas emissions. However, uncertainties persist regarding both feasibility and consequences of major NbS deployment. Using the United Kingdom as a national-level case study, we examined the potential contribution of three terrestrial NbS: peatland restoration, saltmarsh creation and woodland creation.
While there is substantial political and societal interest in these three NbS, they also have strong potential for competition with other land uses, which will be a critical barrier to substantial deployment. We conducted a national mapping exercise to assess the potential area available for woodland creation. We then assessed the combined climate change mitigation potential to 2100 for the three NbS options under a range of ambition levels.
In line with the most ambitious targets examined, 2 Mha of land is potentially available for new woodland. However, climate change mitigation benefits of woodland are strongly dependent on management choices. By 2100, scenarios with a greater proportion of broadleaved woodlands outsequester non-native conifer plantations, which are limited by regular timber harvesting.
Peatland restoration offers the greatest mitigation per unit area, whilst the contribution from saltmarsh creation is limited by the small areas involved. Overall, the contribution of these NbS to the United Kingdom’s net zero emissions target is relatively modest. Even with the most ambitious targets considered here, by 2100, the total cumulative mitigation from the three NbS is equivalent to only 3 years’ worth of UK emissions at current levels.
Policy implications. Major deployment of nature-based solutions (NbS) is possible in the United Kingdom but reaching ‘net zero’ primarily requires substantial and sustained reductions in fossil fuel use. However, facilitating these NbS at the national scale could offer many additional benefits for people and biodiversity. This demands that policy-makers commit to a UK-wide strategic approach that prioritises the ‘nature’ aspect of NbS. In the push to reach ‘net zero’, climate change mitigation should not be used to justify land management practices that threaten biodiversity ambitions.
Ecological restorationClimate change mitigation
Evidence for the effectiveness of nature-based solutions to water issues in Africa
There is increasing global interest in employing nature-based solutions, such as reforestation and wetland restoration, to help reduce water risks to economies and society, including water pollution, floods, droughts and water scarcity, that are likely to become worse under future climates. Africa is exposed to many such water risks. Nature-based solutions for adaptation should be designed to benefit biodiversity and can also provide multiple co-benefits, such as carbon sequestration. A systematic review of over 10 000 publications revealed 150 containing 492 quantitative case studies related to the effectiveness of nature-based solutions for downstream water quantity and water quality (including sediment load) in Africa. The solutions assessed included landscape-scale interventions and patterns (forests and natural wetlands) and site-specific interventions (constructed wetlands and urban interventions e.g. soakaways). Consistent evidence was found that nature-based solutions can improve water quality. In contrast, evidence of their effectiveness for improving downstream water resource quantity was inconsistent, with most case studies showing a decline in water yield where forests (particularly plantations of non-native species) and wetlands are present. The evidence further suggests that restoration of forests and floodplain wetlands can reduce flood risk, and their conservation can prevent future increases in risk; in contrast, this is not the case for headwater wetlands. Potential trade-offs identified include nature-based solutions reducing flood risk and pollution, whilst decreasing downstream water resource quantity. The evidence provides a scientific underpinning for policy and planning for nature-based solutions to water-related risks in Africa, though implementation will require local knowledge.
Ecological restorationEcosystem-based adaptationEcosystem-based managementEcosystem-based mitigationClimate change adaptationEcosystem healthFood and water securityArtificial Landscapes - TerrestrialForestWetland
Assessing urban ecosystem services to prioritise nature-based solutions in a high-density urban area
Nature-based solutions have emerged as a concept for integrating ecosystem-based approaches whilst addressing multiple sustainable development goals. However, implementing nature-based solutions is inherently complex and requires consideration of a range of environmental and socio-economic conditions that may impact on their effectiveness. This research assesses ecosystem services within the Valletta urban agglomeration, Malta, and evaluates the implications arising from existing distributional patterns. Proxy-based indicators and expert knowledge were used to map and assess a set of 14 ecosystem services. Proximity and correlation analyses were used to assess distributional inequalities arising from differentiated availability of ecosystem types with high ecosystem service capacities for groups with different socio-economic characteristics. Data relating to schooling, employment, sickness, disability, and old age, were combined to identify areas of relative advantage and disadvantage. The highest ecosystem service capacities were in the urban fringes and the lowest in dense urban cores. Private gardens and urban trees had the highest regulating ecosystem service capacities per unit area. Contrastingly, public gardens had low effectiveness for regulating ecosystem services but the highest cultural ecosystem service capacities. Availability of urban green infrastructure and tree cover differ according to socio-economic advantage, and disadvantaged communities generally had reduced proximity to ecosystems with high ecosystem service capacities. Considering these findings, we argue that urban ecosystem service assessments can support greening strategies by identifying the most effective nature-based solutions that can play a redistributive role by addressing existing inequalities in green infrastructure and ecosystem services capacities distribution in cities.
Human well-being & developmentArtificial Landscapes - TerrestrialCoastline
Assessing soil and land health across two landscapes in eastern Rwanda to inform restoration activities
Land degradation negatively impacts water, food, and nutrition security and is leading to increased competition for resources. While landscape restoration has the potential to restore ecosystem function, understanding the drivers of degradation is critical for prioritizing and tracking interventions. We sampled 300–1000 m2 plots using the Land Degradation Surveillance Framework across Nyagatare and Kayonza districts in Rwanda to assess key soil and land health indicators, including soil organic carbon (SOC), erosion prevalence, vegetation structure and infiltration capacity, and their interactions. SOC content decreased with increasing sand content across both sites and sampling depths and was lowest in croplands and grasslands compared to shrublands and woodlands. Stable carbon isotope values (δ13C) ranged from −15.35 ‰ to −21.34 ‰, indicating a wide range of historic and current plant communities with both C3 and C4 photosynthetic pathways. Field-saturated hydraulic conductivity (Kfs) was modeled, with a median of 76 mm h−1 in Kayonza and 62 mm h−1 in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand, and erosion had negative effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of soil erosion and SOC at 30 m resolution were produced with high accuracy and showed strong variability across the study landscapes. These data demonstrate the importance of assessing multiple biophysical properties in order to assess land degradation, including the spatial patterns of soil and land health indicators across the landscape. By understanding the dynamics of land degradation and interactions between biophysical indicators, we can better prioritize interventions that result in multiple benefits as well as assess the impacts of restoration options.
There have been many calls for an agroecological transition to respond to food shocks and crises stemming from conventional food systems. Participatory action research and transformative epistemologies, where communities are research actors rather than objects, have been proposed as a way to enhance this transition. However, despite numerous case studies, there is presently no overview of how participatory approaches contribute to agroecological transitions. The present article therefore aims to understand the effect of applying participatory action research (PAR) in agroecology. We undertook a systematic review of articles reporting methods and results from case studies in agroecological research. On the one hand, our systematic review of 347 articles shows that the agroecological research scope is broad, with all three types—as science, a set of practices and social movement—well-represented in the corpus. However, we can see a clear focus on agroecology “as a set of practices” as the primary type of use of the concept. On the other hand, we found a few case studies (23) with a participatory approach while most studies used extractive research methods. These studies show that understanding the drivers and obstacles for achieving an agroecological transition requires long-term research and trust between researchers and farmers. Such transformative epistemologies open doors to new questions on designing long-term PAR research in agroecology when confronted with a short-term project-based society.
Ecosystem-based managementNature-based agricultural systemsEcosystem healthFood and water securityArtificial Landscapes - Terrestrial
The governance of nature-based solutions in the city at the intersection of justice and equity
On the one hand the Special Issue provides a diagnosis of the justice implications embedded in recent efforts to renature cities. Placed in the breadth of existing scholarship, it aims to explore the type of socio-environmental contradictions and contestations emerging through the deployment of nature-based solutions in a range of geographies. On the other hand, this Special Issue works towards shaping a prognosis, or a potential future for the governance of nature-based solutions, that brings social justice, indigenous knowledge and more-than-human thinking into the design and execution of projects on nature-based solutions. More generally, this Special Issue contributes to the growing literature in critical urban geography, planning and ecology on how different types of ‘natures’ are deployed and instrumentalized to defend dominant economic representations. Yet, for nature-based solutions to truly stand up to their promise, the logic and apparatus of urban development need to be decoupled from the ‘growth-at-all-costs’ mental cage by exploring degrowth narratives, for example as only then can environmental justice in its various manifestations be sought, defended and unfolded.
Nature-based solutions in generalHuman well-being & development
Uptake and implementation of Nature-Based Solutions: An analysis of barriers using Interpretive Structural Modeling
Cities increasingly have to find innovative ways to address challenges arising from climate change and urbanization. Nature-based solutions (NBS) have been gaining attention as multifunctional solutions that may help cities to address these challenges. However, the adoption and implementation of these solutions have been limited due to various barriers. This study aims to identify a taxonomy of dominant barriers to the uptake and implementation of NBS and their relationships. Fifteen barriers are identified from the literature and expert interviews and then ranked through a questionnaire. Interpretive Structural Modeling (ISM) serves to identify the mutual interdependencies among these barriers, which results in a structural model of six levels. Subsequently, Cross-impact matrix multiplication applied to classification (MICMAC analysis) is used to classify the barriers into four categories. The results suggest that political, institutional and knowledge-related barriers are the most dominant barriers to NBS. Cities that intend to apply NBS can draw on these findings, especially by more effectively prioritizing and managing their actions.
Nature-based solutions in generalClimate change adaptationClimate change mitigationDisaster risk reductionEcosystem healthFood and water securityHuman well-being & developmentArtificial Landscapes - Terrestrial
Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes
Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples’ lands, we examined the importance of these areas for conserving the world’s remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples’ lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples’ lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples’ rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision‐making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.
The increasing impacts of climate hazards combined with the loss of coastal habitats require urgent solutions to manage risk. Storm losses continue to grow and much of them are uninsured. These losses represent an increasing burden to individuals, businesses, and can jeopardize national development goals. Pre-hazard mitigation is cost effective, but both the public and private sector struggle to finance up-front investments in it. This article explores a resilience solution that combines risk transfer (e.g., insurance) with risk reduction (e.g., hazard mitigation), which have often been treated as two separate mechanisms for disaster risk management. The combined mechanism could help align environmental and risk management goals and create opportunities for public and private investment in nature-based projects. We assessed this resilience insurance with hypothetical cases for coral reef restoration. Under conservative assumptions, 44% of the initial reef restoration costs would be covered just by insurance premium reductions in the first 5 years, with benefits amounting >6 times the total costs over 25 years. We also test the sensitivity to key factors such as project cost, risk reduction potential, insurance structure, economic exposure and discount rates. The resilience insurance mechanism is applicable to many coastlines and can help finance nature-based adaptation.
Marine reserves can be effective conservation and fishery management tools, particularly when their design accounts for spatial population connectivity. Yet climate change is expected to significantly alter larval connectivity of many marine species, questioning whether marine reserves designed today will still be effective in the future. Here we predict how alternative marine reserve designs will affect fishery yields. We apply a range of empirically-grounded scenarios for future larval dispersal to fishery models of seven species currently managed through marine reserves in the nearshore waters in Southern California, USA. We show that networks of reserves optimized for future climate conditions differ substantially from networks designed for today’s conditions. However, the benefits of redesign are modest: a set of reserves designed for current conditions commonly produces outcomes within 10 percent of the best redesigned network, and far outperforms haphazardly designed networks. Thus, investing in the strategic design of marine reserves networks today may pay dividends even if the networks are not modified to keep up with environmental change.
Area-based approachesClimate change adaptationFood and water securityHuman well-being & developmentMarine
National mitigation potential from natural climate solutions in the tropics
Better land stewardship is needed to achieve the Paris Agreement’s temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement’s goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)—protection, improved management and restoration of ecosystems—to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr−1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
As the severity of the triple challenges of global inequality, climate change and biodiversity loss becomes clearer, governments and international development institutions must find effective policy instruments to respond. We examine the potential of social assistance policies in this context. Social assistance refers to transfers to poor, vulnerable and marginalized groups to reduce their vulnerability and livelihood risks, and to enhance their rights and status. Substantial public funds support social assistance programmes globally. Collectively, lower- and middle-income countries spend approximately 1.5% of their GDP on social assistance annually. We focus on the potential of paid employment schemes to promote effective ecosystem stewardship. Available evidence suggests such programmes can offer multiple benefits in terms of improvements in local ecosystems and natural capital, carbon sequestration and local biodiversity conservation. We review evidence from three key case studies: in India (the Mahatma Gandhi National Rural Employment Guarantee Scheme), Ethiopia (the Productive Safety Nets Programme) and Mexico (the Temporary Employment Programme). We conclude that, to realize the potential of employment-based social assistance for ecosystem benefits it will be necessary to address two challenges: first, the weak design and maintenance of local public works outputs in many schemes, and second, the concern that social protection schemes may become less effective if they are overburdened with additional objectives. Overcoming these challenges requires an evolution of institutional systems for delivering social assistance to enable a more effective combination of social and environmental objectives. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
Community-based adaptationEcological restorationEcosystem-based adaptationEcosystem-based mitigationNatural resource managementNature-based agricultural systemsNature-based solutions in generalClimate change adaptationClimate change mitigationEcosystem healthFood and water securityHuman well-being & development
Understanding the value and limits of nature-based solutions to climate change and other global challenges
There is growing awareness that ‘nature-based solutions’ (NbS) can help to protect us from climate change impacts while slowing further warming, supporting biodiversity and securing ecosystem services. However, the potential of NbS to provide the intended benefits has not been rigorously assessed. There are concerns over their reliability and cost-effectiveness compared to engineered alternatives, and their resilience to climate change. Trade-offs can arise if climate mitigation policy encourages NbS with low biodiversity value, such as afforestation with non-native monocultures. This can result in maladaptation, especially in a rapidly changing world where biodiversity-based resilience and multi-functional landscapes are key. Here, we highlight the rise of NbS in climate policy—focusing on their potential for climate change adaptation as well as mitigation—and discuss barriers to their evidence-based implementation. We outline the major financial and governance challenges to implementing NbS at scale, highlighting avenues for further research. As climate policy turns increasingly towards greenhouse gas removal approaches such as afforestation, we stress the urgent need for natural and social scientists to engage with policy makers. They must ensure that NbS can achieve their potential to tackle both the climate and biodiversity crisis while also contributing to sustainable development. This will require systemic change in the way we conduct research and run our institutions. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
Ecosystem-based adaptationEcosystem-based mitigationNature-based solutions in generalClimate change adaptationClimate change mitigation
Protecting wetlands for people: Strategic policy action can help wetlands mitigate risks and enhance resilience
We elevate the undervalued role of wetland protective services for mitigating disastrous consequences of unprecedented weather-related events for human communities. Scientific evidence increasingly reveals that wetlands play critical hydrologic roles in landscapes, helping to mitigate flood, drought, and, in some cases, fire risks. However, wetland protective services have not received sufficient policy action. We propose national wetland commissions, modeled after the concept of lake and river commissions, as one way to strategically link wetland protection to other societal objectives, including human disaster risk planning, infrastructure investments, and climate adaptation strategies. We offer an example applicable to the United States, describing an institutional design for a National Interagency Wetland Commission. We suggest it could be patterned after existing federal commissions statutorily created by Congress with delegated administrative and regulatory authority and designated independent agency status within the executive branch. It is time for bold and innovative policy action to incorporate wetland protective services into societies’ defenses against extreme weather events.