Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, ‘climate adaptation services’, are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning.
Publication type: Methodological Article
Methodological article
Sea-level rise, potential changes in the intensity and frequency of storms, and consequent shoreline erosion and flooding will have increasing impacts on the economy and culture of coastal regions. A growing body of evidence suggests that coastal ecosystems—natural infrastructure—can play an important role in reducing the vulnerability of people and property to these impacts. To effectively inform climate adaptation planning, experts often struggle to develop relevant local and regional information at a scale that is appropriate for decision-making. In addition, institutional capacity and resource constraints often limit planners’ ability to incorporate innovative, scientifically based approaches into planning. In this paper, we detail our collaborative process in two coastal California counties to account for the role of natural infrastructure in climate adaptation planning. We used an interdisciplinary team of scientists, economists, engineers, and law and policy experts and planners, and an iterative engagement process to (1) identify natural infrastructure that is geographically relevant to local jurisdictional planning units, (2) refine data and models to reflect regional processes, and (3) develop metrics likely to resonate within the local decision contexts. Using an open source decision-support tool, we demonstrated that protecting existing natural infrastructure—including coastal dunes and wetlands—could reduce the vulnerability of water resource-related structures, coastal populations, and farmland most exposed to coastal flooding and erosion. This information formed part of the rationale for priority climate adaptation projects the county governments are now pursuing. Our collaborative and iterative approach, as well as replicable use of an open source decision-support tool, facilitated inclusion of relevant natural infrastructure information into regional climate adaptation planning processes and products. This approach can be applied in diverse coastal climate adaptation planning contexts to locate and characterize the degree to which specific natural habitats can reduce vulnerability to sea-level rise and storms.
This study proposes a novel approach for establishing adaptive environmental-flow prescriptions for rivers, channels, and floodways with substantial flow augmentation and a limited decision space using the highly altered Atchafalaya River Basin (ARB) in Louisiana as an example. Development of the ARB into the primary floodway of the Mississippi River and Tributaries Project has contributed to hydrologic changes basin-wide that have altered the river-floodplain interface threatening important ecosystems, notably the expansive baldcypress-water tupelo swamp forests. Current restoration efforts only address the spatial distribution of water in local areas of the basin; however, the timing, frequency, magnitude, and duration of ecologically-important high and low flows are determined at the basin-wide scale by the daily implementation of a federal flow mandate that limits available water management options. We used current hydrologic conditions and established flow-ecology relationships from the literature to develop an environmental flow prescription for the ARB that provides basin-wide flow targets to complement ongoing restoration efforts. Hydrologic analysis of current flows and the flow-ecology requirements for these wetland forests revealed an overlap in the range of flow variability under the current water management model, suggesting environmental flows can be complementary with the desired hydraulic and geomorphic characteristics of the floodway. The result is a first step towards an adaptive flow regime that strives to balance important flow-ecology relationships within a decision space limited by a federal flow mandate. We found high potential for success in managing water for nature while accommodating other management needs for the river.