Climate change influences on pollinator, forest, and farm interactions across a climate gradient

Hannah, L. et al., 2017. Climatic Change

Original research
View External Publication Link Peer Reviewed

Abstract

Climate impact models are often implemented at horizontal resolutions (“scales”) too coarse to be readily applied in local impact assessments. However, recent advancements in fine-scale modeling are allowing the creation of impact models that can be applied to landscape-scale adaptation planning. Here, we illustrate the use of fine-scale impact models for landscape-scale adaptation planning of pollination services for six sites in Central America. The strategies include the identification of (1) potential reservoir areas that may retain bee diversity and serve as a source of recolonization after climate shocks such as droughts; and (2) potential restoration areas, where improving forest cover is likely to lead to increases in pollinator services both in the present and in the future. Coarse-scale (>1-km horizontal resolution) climatic controls on pollinator diversity and forest cover determine the general location of these areas in our six landscapes. Fine-scale (<100-m horizontal resolution) variation in climatic water deficit provides an index of forest health which can help identify intervention strategies within these zones. All sites have significant areas in which protecting or restoring forest cover is likely to enhance pollination services. The gradient in rainfall change across the study sites dictates choice of adaptation strategies.

Publication Information