A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km2 scale catchment in the United Kingdom

Metcalfe, P. et al., 2017. Hydrological Processes

Original research
View External Publication Link Peer Reviewed

Abstract

Nature-based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in-channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in-channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double-peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature-based approach.

Publication Information